C

Review of Memory Hierarchy

Cache:a safe place for hiding or storing things.

Webster’s New World Dictionary of the
American Language
Second College Edition (1976)

C-2

Appendix C Review of Memory Hierarchy

c1

introduction

This appendix is a quick refresher of the memory hierarchy, including the basics
of cache and virtual memory, performance equations, and simple optimizations.
This first section reviews the following 36 terms:

cache fully associative write allocate
virtual memory dirty bit unified cache
memory stall cycles block offset misses per instruction
direct mapped write back block

valid bit data cache locality

block address hit time address trace

write through cache miss set

instruction cache page fault random replacement
average memory access time miss rate index field

cache hit n-way set associative no-write allocate
page least-recently used write buffer

miss penalty tag field write stall

If this review goes too quickly, you might want to look at Chapter 7 in Computer
Organization and Design, which we wrote for readers with less experience.

Cache is the name given to the highest or first level of the memory hierarchy
encountered once the address leaves the processor. Since the principle of locality
applies at many levels, and taking advantage of locality to improve performance
is popular, the term cache is now applied whenever buffering is employed to
reuse commonly occurring items. Examples include file caches, name caches,
and so on.

When the processor finds a requested data item in the cache, it is called a
cache hit. When the processor does not find a data item it needs in the cache, a
cache miss occurs. A fixed-size collection of data containing the requested word,
called a block or line run, is retrieved from the main memory and placed into the
cache. Temporal locality tells us that we are likely to need this word again in the
near future, so it is useful to place it in the cache where it can be accessed
quickly. Because of spatial locality, there is a high probability that the other data
in the block will be needed soon.

The time required for the cache miss depends on both the latency and band-
width of the memory. Latency determines the time to retrieve the first word of the
block, and bandwidth determines the time to retrieve the rest of this block. A
cache miss is handled by hardware and causes processors using in-order execu-

C.1 Introduction - C-3

Level 1 2 3 4
Name registers cache main memory disk storage
Typical size <1KB <16 MB <512GB >1TB

Implementation technology custom memory with on-chip or off-chip CMOS DRAM magnetic disk
multiple ports, CMOS CMOS SRAM

Access time (ns) 0.25-0.5 0.5-25 50-250 5,000,000
Bandwidth (MB/sec) 50,000-500,000 5000-20,000 2500-10,000 50-500
Managed by compiler hardware operating system operating
system/
operator
Backed by cache main memory disk CD or tape

Figure C.1 The typical levels in the hierarchy slow down and get larger as we move away from the processor for
a large workstation or small server. Embedded computers might have no disk storage, and much smaller memories
and caches.The access times increase as we move to lower levels of the hierarchy, which makes it feasible to manage
the transfer less responsively. The implementation technology shows the typical technology used for these func-
tions. The access time is given in nanoseconds for typical values in 2006; these times will decrease over time. Band-
width is given in megabytes per second between levels in the memory hierarchy. Bandwidth for disk storage
includes both the media and the buffered interfaces.

tion to pause, or stall, until the data are available. With out-of-order execution, an
instruction using the result must still wait, but other instructions may proceed
during the miss.

Similarly, not all objects referenced by a program need to reside in main
memory. Virtual memory means some objects may reside on disk. The address
space is usually broken into fixed-size blocks, called pages. At any time, each
page resides either in main memory or on disk. When the processor references an
item within a page that is not present in the cache or main memory, a page Sfault
occurs, and the entire page is moved from the disk to main memory. Since page
faults take so long, they are handled in software and the processor is not stalled.
The processor usually switches to some other task while the disk access occurs.
From a high-level perspective, the reliance on locality of references and the rela-
tive relationships in size and relative cost per bit of cache versus main memory
are similar to those of main memory versus disk.

Figure C.1 shows the range of sizes and access times of each level in the
memory hierarchy for computers ranging from high-end desktops to low-end
Sservers.

Cache Performance Review

Because of locality and the higher speed of smaller memories, a memory hierar-
chy can substantially improve performance. One method to evaluate cache per-
formance is to expand our processor execution time equation from Chapter 1.
We now account for the number of cycles during which the processor is stalled

C-4

Appendix C Review of Memory Hierarchy

waiting for a memory access, which we call the memory stall cycles. The perfor-
mance is then the product of the clock cycle time and the sum of the processor
cycles and the memory stall cycles:

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle time

This equation assumes that the CPU clock cycles include the time to handle a
cache hit, and that the processor is stalled during a cache miss. Section C.2 reex-
amines this simplifying assumption.

The number of memory stall cycles depends on both the number of misses
and the cost per miss, which is called the miss penalty:

Memory stall cycles = Number of misses X Miss penalty
= ICx M X Miss penalty
Instruction

% Memory accesses

= IC -
Instruction

x Miss rate X Miss penalty

The advantage of the last form is that the components can be easily measured. We
already know how to measure instruction count. (For speculative processors, we
only count instructions that commit.) Measuring the number of memory refer-
ences per instruction can be done in the same fashion; every instruction requires
an instruction access. and it is easy to decide if it also requires a data access.

Note that we calculated miss penalty as an average, but we will use it below
as if it were a constant. The memory behind the cache may be busy at the time of
the miss because of prior memory requests or memory refresh (see Section 5.3).
The number of clock cycles also varies at interfaces between different clocks of
the processor, bus, and memory. Thus, please remember that using a single num-
ber for miss penalty is a simplification.

The component miss rate is simply the fraction of cache accesses that result
in a miss (i.e., number of accesses that miss divided by number of accesses). Miss
rates can be measured with cache simulators that take an address trace of the
instruction and data references, simulate the cache behavior to determine which
references hit and which miss, and then report the hit and miss totals. Many
microprocessors today provide hardware to count the number of misses and
memory references, which is a much easier and faster way to measure miss rate.

The formula above is an approximation since the miss rates and miss penal-
ties are often different for reads and writes. Memory stall clock cycles could then
be defined in terms of the number of memory accesses per instruction, miss pen-
alty (in clock cycles) for reads and writes, and miss rate for reads and writes:

Memory stall clock cycles = IC x Reads per instruction x Read miss rate X Read miss penalty

+ IC x Writes per instruction X Write miss rate X Write miss penalty

We normally simplify the complete formula by combining the reads and writes
and finding the average miss rates and miss penalty for reads and writes:

Memory accesses

- x Miss rate X Miss penalty
Instruction

Memory stall clock cycles = IC x

C.1 Introduction C-5

The miss rate is one of the most important measures of cache design, but, as
we will see in later sections, not the only measure.

Example

Answer

Assume we have a computer where the clocks per instruction (CPI) is 1.0 when
all memory accesses hit in the cache. The only data accesses are loads and stores,
and these total 50% of the instructions. If the miss penalty is 25 clock cycles-and
the miss rate is 2%, how much faster would the computer be if all instructions
were cache hits?

First compute the performance for the computer that always hits:

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle
(IC x CPI + 0) x Clock cycle
IC x 1.0 x Clock cycle

Now for the computer with the real cache, first we compute memory stall cycles:
Memory accesses
Instruction
ICx(1+0.5)x0.02x25

1IC x0.75

Memory stall cycles = IC x x Miss rate X Miss penalty

1l

where the middle term (1 + 0.5) represents one instruction access and 0.5 data
accesses per instruction. The total performance is thus

= (IC x 1.0+ IC x 0.75) x Clock cycle
1.75 x IC x Clock cycle

CPU execution time , .

The performance ratio is the inverse of the execution times:

CPU execution ime ;. 1,75 x IC x Clock cycle
CPU execution time 1.0 x IC x Clock cycle
= 1.75

The computer with no cache misses is 1.75 times faster.

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference. These two are related:

Misses _ Miss rate X Memory accesses _ o oo Memory accesses
Instruction Instruction count) Instruction

The latter formula is useful when you know the average number of memory
accesses per instruction because it allows you to convert miss rate into misses per
instruction, and vice versa. For example. we can turn the miss rate per memory
reference in the previous example into misses per instruction:

Misses . Memory accesses
= Miss rate X ——————

— - = 0.02x 1.5 = 0.030
Instruction Instruction

c-6

Appendix C Review of Memory Hierarchy

By the way, misses per instruction are often reported as misses per 1000
instructions to show integers instead of fractions. Thus, the answer above could
also be expressed as 30 misses per 1000 instructions.

The advantage of misses per instruction is that it is independent of the hard-
ware implementation. For example, speculative processors fetch about twice as
many instructions as are actually committed, which can artificially reduce the
miss rate if measured as misses per memory reference rather than per instruction.
The drawback is that misses per instruction is architecture dependent; for exam-
ple, the average number of memory accesses per instruction may be very differ-
ent for an 80x86 versus MIPS. Thus, misses per instruction are most popular with
architects working with a single computer family, although the similarity of
RISC architectures allows one to give insights into others.

Example

Answer

To show equivalency between the two miss rate equations, let’s redo the example
above, this time assuming a miss rate per 1000 instructions of 30. What is mem-
ory stall time in terms of instruction count?

Recomputing the memory stall cycles:

Memory stall cycles = Number of misses X Miss penalty
Misses .
= ICX ————
X Tnstraction X Miss penalty

Misses .
= IC /1000 x m X Miss pcnalty

= IC /1000 x 30 x 25
= IC /1000 x 750
= ICx0.75

We get the same answer as on page C-5, showing equivalence of the two
equations.

Four Memory Hierarchy Questions

We continue our introduction to caches by answering the four common questions
for the first level of the memory hierarchy:

Q1: Where can a block be placed in the upper level? (block placement)

Q2: How is a block found if it is in the upper level? (block identification)

Q3: Which block should be replaced on a miss? (block replacement)

Q4: What happens on a write? (write strategy)
The answers to these questions help us understand the different trade-offs of

memories at different levels of a hierarchy; hence we ask these four questions on
every example.

C.1 Introduction Cc7

Q1:Where Can a Block Be Placed in a Cache?

Figure C.2 shows that the restrictions on where a block is placed create three
categories of cache organization:

m If each block has only one place it can appear in the cache, the cache is said to
be direct mapped. The mapping is usually

(Block address) MOD (Number of blocks in cache)
m If a block can be placed anywhere in the cache, the cache is said to be fully
associative.

s If a block can be placed in a restricted set of places in the cache, the cache is
set associative. A set is a group of blocks in the cache. A block is first mapped
onto a set, and then the block can be placed anywhere within that set. The set
is usually chosen by bit selection, that is,

(Block address) MOD (Number of sets in cache)

Fully associative: Direct mapped: Set associative:
block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywhere in set 0
{12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567
no. [no. no.
Cache
Set Set Set Set
o 1 2 3
Block frame address
Block 1111111111222222222233
n. 01234567890123456789012345678901
Memory

Figure C.2 This example cache has eight block frames and memory has 32 blocks.
The three options for caches are shown left to right. In fully associative, block 12 from
the lower level can go into any of the eight block frames of the cache. With direct
mapped, block 12 can only be placed into block frame 4 (12 modulo 8). Set associative,
which has some of both features, allows the block to be placed anywhere in set 0 (12
modulo 4). With two blocks per set, this means block 12 can be placed either in block 0
orin block 1 of the cache. Real caches contain thousands of block frames and real mem-
ories contain millions of blocks. The set-associative organization has four sets with two
blocks per set, called two-way set associative. Assume that there is nothing in the cache
and that the block address in question identifies lower-level block 12.

Cc-8

Appendix C Review of Memory Hierarchy

If there are n blocks in a set, the cache placement is called n-way set
associative.

The range of caches from direct mapped to fully associative is really a continuum
of levels of set associativity. Direct mapped is simply one-way set associative,
and a fully associative cache with m blocks could be called “m-way set associa-
tive.” Equivalently, direct mapped can be thought of as having m sets, and fully
associative as having one set.

The vast majority of processor caches today are direct mapped, two-way sel
associative, or four-way set associative, for reasons we will see shortly.

Q2:How Is a Block Found If It Is in the Cache?

Caches have an address tag on each block frame that gives the block address. The
tag of every cache block that might contain the desired information is checked to
see if it matches the block address from the processor. As a rule, all possible tags
are searched in parallel because speed is critical.

There must be a way to know that a cache block does not have valid informa-
tion. The most common procedure is to add a valid bit to the tag to say whether or
not this entry contains a valid address. If the bit is not set, there cannot be a match
on this address.

Before proceeding to the next question, let’s explore the relationship of a
processor address to the cache. Figure C.3 shows how an address is divided.
The first division is between the block address and the block offset. The block
frame address can be further divided into the rag field and the index Sfield. The
block offset field selects the desired data from the block. the index field selects
the set, and the tag field is compared against it for a hit. Although the compari-
son could be made on more of the address than the tag, there is no need because
of the following:

m The offset should not be used in the comparison. since the entire block is
present or not, and hence all block offsets result in a match by definition.

m Checking the index is redundant, since it was used to select the set to be
checked. An address stored in set 0, for example, must have 0 in the index
field or it couldn’t be stored in set 0: set | must have an index value of 1: and
so on. This optimization saves hardware and power by reducing the width of
memory size for the cache tag.

Block address Block
Tag Index offset

Figure C.3 The three portions of an address in a set-associative or direct-mapped
cache. The tag is used to check all the blocks in the set, and the index is used to select
the set. The block offset is the address of the desired data within the block. Fully asso-
ciative caches have no index field.

C.1 Introduction c9

If the total cache size is kept the same, increasing associativity increases the
number of blocks per set, thereby decreasing the size of the index and increasing
the size of the tag. That is, the tag-index boundary in Figure C.3 moves to the
right with increasing associativity, with the end point of fully associative caches
having no index field.

Q3: Which Block Should Be Replaced on a Cache Miss?

When a miss occurs, the cache controller must select a block to be replaced with
the desired data. A benefit of direct-mapped placement is that hardware decisions
are simplified—in fact, so simple that there is no choice: Only one block frame is
checked for a hit, and only that block can be replaced. With fully associative or
set-associative placement, there are many blocks to choose from on a miss. There
are three primary strategies employed for selecting which block to replace:

m Random—To spread allocation uniformly. candidate blocks are randomly
selected. Some systems generate pseudorandom block numbers to get repro-
ducible behavior, which is particularly useful when debugging hardware.

m Least-recently used (LRU)—To reduce the chance of throwing out informa-
tion that will be needed soon, accesses to blocks are recorded. Relying on the
past to predict the future, the block replaced is the one that has been unused
for the longest time. LRU relies on a corollary of locality: If recently used
blocks are likely to be used again, then a good candidate for disposal is the
least-recently used block.

m First in, first out (FIFO)—Because LRU can be complicated to calculate, this
approximates LRU by determining the oldest block rather than the LRU.

A virtue of random replacement is that it is simple to build in hardware. As the
number of blocks to keep track of increases, LRU becomes increasingly
expensive and is frequently only approximated. Figure C.4 shows the difference
in miss rates between LRU, random, and FIFO replacement.

Q4: What Happens on a Write?

Reads dominate processor cache accesses. All instruction accesses are reads, and
most instructions don’t write to memory. Figure B.27 in Appendix B suggests a
mix of 10% stores and 26% loads for MIPS programs, making writes 10%/(100%
+26% + 10%) or about 7% of the overall memory traffic. Of the data cache traf-
fic, writes are 109%/(26% + 10%) or about 28%. Making the common case fast
means optimizing caches for reads, especially since processors traditionally wait
for reads to complete but need not wait for writes. Amdahl’s Law (Section 1.9)
reminds us, however, that high-performance designs cannot neglect the speed of
writes.

Fortunately, the common case is also the easy case to make fast. The block
can be read from the cache at the same time that the tag is read and compared, so

C-10 Appendix C Review of Memory Hierarchy

Associativity

Two-way Four-way Eight-way
Size LRU Random FIFO LRU Random FIFO LRU Random FIFO
16 KB 114.1 117.3 115.5 111.7 115.1 113.3 109.0 111.8 1104
64 KB 103.4 104.3 103.9 102.4 102.3 103.1 99.7 100.5 100.3
256 KB 92.2 92.1 92.5 92.1 92.1 92.5 92.1 92.1 92.5

Figure C.4 Data cache misses per 1000 instructions comparing least-recently used, random, and first in, first out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest-
size cache, with LRU outperforming the others for smaller caches. FIFO generally outperforms random in the smaller
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl) and five are from SPECfp2000 (appluy, art,
equake, lucas, and swim).We will use this computer and these benchmarks in most figures in this appendix.

the block read begins as soon as the block address is available. If the read is a hit,
the requested part of the block is passed on to the processor immediately. If it is a
miss, there is no benefit—but also no harm except more power in desktop and
server computers; just ignore the value read.

Such optimism is not allowed for writes. Modifying a block cannot begin
until the tag is checked to see if the address is a hit. Because tag checking cannot
occur in parallel, writes normally take longer than reads. Another complexity is
that the processor also specifies the size of the write, usually between 1 and 8
bytes; only that portion of a block can be changed. In contrast, reads can access
more bytes than necessary without fear.

The write policies often distinguish cache designs. There are two basic
options when writing to the cache:

m Write through—The information is written to both the block in the cache and
to the block in the lower-level memory.

a Write back—The information is written only to the block in the cache. The
modified cache block is written to main memory only when it is replaced.

To reduce the frequency of writing back blocks on replacement, a feature
called the dirty bit is commonly used. This status bit indicates whether the block
is dirty (modified while in the cache) or clean (not modified). If it is clean, the
block is not written back on a miss, since identical information to the cache is
found in lower levels.

Both write back and write through have their advantages. With write back,
writes occur at the speed of the cache memory, and multiple writes within a block
require only one write to the lower-level memory. Since some writes don’t go to
memory, write back uses less memory bandwidth, making write back attractive in
multiprocessors. Since write back uses the rest of the memory hierarchy and
memory interconnect less than write through, it also saves power, making it
attractive for embedded applications.

C.1 Introduction = C-11

Write through is easier to implement than write back. The cache is always
clean, so unlike write back read misses never result in writes to the lower level.
Write through also has the advantage that the next lower level has the most cur-
rent copy of the data, which simplifies data coherency. Data coherency is impor-
tant for multiprocessors and for /O, which we examine in Chapters 4 and 6.
Multilevel caches make write through more viable for the upper-level caches, as
the writes need only propagate to the next lower level rather than all the way to
main memory.

As we will see, I/O and multiprocessors are fickle: They want write back for
processor caches to reduce the memory traffic and write through to keep the
cache consistent with lower levels of the memory hierarchy.

When the processor must wait for writes to complete during write through,
the processor is said to write stall. A common optimization to reduce write stalls
is a write buffer, which allows the processor to continue as soon as the data are
written to the buffer, thereby overlapping processor execution with memory
updating. As we will see shortly, write stalls can occur even with write buffers.

Since the data are not needed on a write, there are two options on a
write miss:

a Write allocate —The block is allocated on a write miss, followed by the write
hit actions above. In this natural option, write misses act like read misses.

a No-write allocate—This apparently unusual alternative is write misses do not
affect the cache. Instead, the block is modified only in the lower-level memory.

Thus, blocks stay out of the cache in no-write allocate until the program tries to
read the blocks, but even blocks that are only written will still be in the cache
with write allocate. Let’s look at an example.

Example

Answer

Assume a fully assotiative write-back cache with many cache entries that starts
empty. Below is a sequence of five memory operations (the address is in square
brackets):

Write Mem[100];
WriteMem[100] ;
Read Mem[200];
WriteMem[200] ;
WriteMem[100] .

What are the number of hits and misses when using no-write allocate versus write
allocate?

For no-write allocate, the address 100 is not in the cache, and there is no alloca-
tion on write, so the first two writes will result in misses. Address 200 is also not
in the cache, so the read is also a miss. The subsequent write to address 200is a
hit. The last write to 100 is still a miss. The result for no-write allocate is four
misses and one hit.

C-12

Appendix C Review of Memory Hierarchy

For write allocate, the first accesses to 100 and 200 are misses, and the rest
are hits since 100 and 200 are both found in the cache. Thus, the result for write
allocate is two misses and three hits.

Either write miss policy could be used with write through or write back. Nor-
mally, write-back caches use write allocate, hoping that subsequent writes to that
block will be captured by the cache. Write-through caches often use no-write
allocate. The reasoning is that even if there are subsequent writes to that block.
the writes must still go to the lower-level memory, so what’s to be gained?

An Example: The Opteron Data Cache

To give substance to these ideas, Figure C.5 shows the organization of the data
cache in the AMD Opteron microprocessor. The cache contains 65,536 (64K)
bytes of data in 64-byte blocks with two-way set-associative placement, least-
recently used replacement, write back, and write allocate on a write miss.

Let’s trace a cache hit through the steps of a hit as labeled in Figure C.5. (The
four steps are shown as circled numbers.) As described in Section C.5, the
Opteron presents a 48-bit virtual address to the cache for tag comparison, which
is simultaneously translated into a 40-bit physical address.

The reason Opteron doesn’t use all 64 bits of virtual address is that its design-
ers don’t think anyone needs that big of a virtual address space yet, and the
smaller size simplifies the Opteron virtual address mapping. The designers plan
to grow the virtual address in future microprocessors.

The physical address coming into the cache is divided into two fields: the 34-
bit block address and the 6-bit block offset (64 = 2% and 34 + 6 = 40). The block
address is further divided into an address tag and cache index. Step 1 shows this
division.

The cache index selects the tag to be tested to see if the desired block is in the
cache. The size of the index depends on cache size, block size, and set associativ-
ity. For the Opteron cache the set associativity is set to two, and we calculate the
index as follows:

jlndex Cache size 205536 o5 _ 50
Block size x Set associativity = 64 x 2 -

Hence, the index is 9 bits wide, and the tag is 34 ~ 9 or 25 bits wide. Although
that is the index needed to select the proper block, 64 bytes is much more than the
processor wants to consume at once. Hence, it makes more sense to organize the
data portion of the cache memory 8 bytes wide, which is the natural data word of
the 64-bit Opteron processor. Thus, in addition to 9 bits to index the proper cache
block, 3 more bits from the block offset are used to index the proper 8 bytes.
Index selection is step 2 in Figure C.5.

After reading the two tags from the cache, they are compared to the tag por-
tion of the block address from the processor. This comparison is step 3 in the fig-

C.1 Introduction C-13

Block @
Block address offset CPU
<25> <9> <6> address
Tag 1 Index] l Data Data
™in out
Valid Tag Data
<1> <25> <64> *
(512 ©) L
blocks) e
H
9 O

(512
blocks) I

@ }
Victim
buffer

1

[Lower-level memory !

W

Figure C.5 The organization of the data cache in the Opteron microprocessor.The
64 KB cache is two-way set associative with 64-byte blocks. The 9-bit index selects
among 512 sets, The four steps of a read hit, shown as circled numbers in order of
occurrence, label this organization. Three bits of the block offset join the index to sup-
ply the RAM address to select the proper 8 bytes. Thus, the cache holds two groups of
4096 64-bit words, with each group containing half of the 512 sets. Although not exer-
cised in this example, the line from lower-level memory to the cache is used on a miss
to load the cache. The size of address leaving the processor is 40 bits because it is a
physical address and not a virtual address. Figure C.23 on page C-45 explains how the
Opteron maps from virtual to physical for a cache access.

ure. To be sure the tag contains valid information, the valid bit must be set or else
the results of the comparison are ignored.

Assuming one tag does match, the final step is to signal the processor to load
the proper data from the cache by using the winning input from a 2:1 multiplexor.
The Opteron allows 2 clock cycles for these four steps, so the instructions in the
following 2 clock cycles would wait if they tried to use the result of the load.

Handling writes is more complicated than handling reads in the Opteron, as it
is in any cache. If the word to be written is in the cache, the first three steps are
the same. Since the Opteron executes out of order, only after it signals that the
instruction has committed and the cache tag comparison indicates a hit are the
data written to the cache.

So far we have assumed the common case of a cache hit. What happens on a
miss? On a read miss, the cache sends a signal to the processor telling it the data

C-14

Appendix C Review of Memory Hierarchy

are not yet available, and 64 bytes are read from the next level of the hierarchy.
The latency is 7 clock cycles to the first 8 bytes of the block, and then 2 clock
cycles per 8 bytes for the rest of the block. Since the data cache is set associative,
there is a choice on which block to replace. Opteron uses LRU, which selects the
block that was referenced longest ago, so every access must update the LRU bit.
Replacing a block means updating the data, the address tag, the valid bit, and the
LRU bit.

Since the Opteron uses write back, the old data block could have been modi-
fied, and hence it cannot simply be discarded. The Opteron keeps 1 dirty bit per
block to record if the block was written. If the “victim” was modified, its data and
address are sent to the Victim Buffer. (This structure is similar to a write buffer in
other computers.) The Opteron has space for eight victim blocks. In parallel with
other cache actions, it writes victim blocks to the next level of the hierarchy. If
the Victim Buffer is full, the cache must wait.

A write miss is very similar to a read miss, since the Opteron allocates a
block on a read or a write miss.

We have seen how it works, but the data cache cannot supply all the mem-
ory needs of the processor: The processor also needs instructions. Although a
single cache could try to supply both, it can be a bottleneck. For example, when
a load or store instruction is executed, the pipelined processor will simulta-
neously request both a data word and an instruction word. Hence, a single
cache would present a structural hazard for loads and stores, leading to stalls.
One simple way to conquer this problem is to divide it: One cache is dedicated
to instructions and another to data. Separate caches are found in most recent
processors, including the Opteron. Hence, it has a 64 KB instruction cache as
well as the 64 KB data cache.

The processor knows whether it is issuing an instruction address or a data
address, so there can be separate ports for both, thereby doubling the bandwidth
between the memory hierarchy and the processor. Separate caches also offer the
opportunity of optimizing each cache separately: Different capacities, block
sizes, and associativities may lead to better performance. (In contrast to the
instruction caches and data caches of the Opteron, the terms unified or mixed are
applied to caches that can contain either instructions or data.)

Figure C.6 shows that instruction caches have lower miss rates than data
caches. Separating instructions and data removes misses due to conflicts between
instruction blocks and data blocks, but the split also fixes the cache space devoted
to each type. Which is more important to miss rates? A fair comparison of sepa-
rate instruction and data caches to unified caches requires the total cache size to
be the same. For example, a separate 16 KB instruction cache and 16 KB data
cache should be compared to a 32 KB unified cache. Calculating the average
miss rate with separate instruction and data caches necessitates knowing the per-
centage of memory references to each cache. Figure B.27 on page B-41 suggests
the split is 100%/(100% + 26% + 10%) or about 74% instruction references to
(26% + 10%)/(100% + 26% + 10%) or about 26% data references. Splitting
affects performance beyond what is indicated by the change in miss rates, as we
will see shortly.

C2

C.2 Cache Performance C-15

Instruction Unified
Size cache Data cache cache
8 KB 8.16 44.0 63.0
16 KB 3.82 409 51.0
32 KB 1.36 384 433
64 KB 0.61 36.9 394
128 KB 0.30 353 36.2
256 KB 0.02 32.6 329

Figure C.6 Miss per 1000 instructions for instruction, data, and unified caches of dif-
ferent sizes. The percentage of instruction references is about 74%. The data are for
two-way associative caches with 64-byte blocks for the same computer and bench-
marks as Figure C.4.

Cache Performance

Because instruction count is independent of the hardware, it is tempting to evaluate
processor performance using that number. Such indirect performance measures
have waylaid many a computer designer. The corresponding temptation for evaluat-
ing memory hierarchy performance is to concentrate on miss rate because it, too, is
independent of the speed of the hardware. As we will see, miss rate can be just as
misleading as instruction count. A better measure of memory hierarchy perfor-
mance is the average memory access time:

Average memory access time = Hit time + Miss rate X Miss penalty

where Hit time is the time to hit in the cache; we have seen the other two terms
before. The components of average access time can be measured either in abso-
lute time—say, 0.25 to 1.0 nanoseconds on a hit—or in the number of clock
cycles that the processor waits for the memory—such as a miss penalty of 150 to
200 clock cycles. Remember that average memory access time is still an indirect
measure of performance; although it is a better measure than miss rate, it is not a
substitute for execution time.
This formula can help us decide between split caches and a unified cache.

Example

Which has the lower miss rate: a 16 KB instruction cache with a 16 KB data
cache or a 32 KB unified cache? Use the miss rates in Figure C.6 to help calculate
the correct answer, assuming 36% of the instructions are data transfer instruc-
tions. Assume a hit takes 1 clock cycle and the miss penalty is 100 clock cycles.
A load or store hit takes 1 extra clock cycle on a unified cache if there is only one
cache port to satisfy two simultaneous requests. Using the pipelining terminology
of Chapter 2, the unified cache leads to a structural hazard. What is the average

C-16

Appendix C Review of Memory Hierarchy

Answer

memory access time in each case? Assume write-through caches with a write
buffer and ignore stalls due to the write buffer.

First let’s convert misses per 1000 instructions into miss rates. Solving the gen-
eral formula from above, the miss rate is
Misses
1000 Instructions
Memory accesses
" Instruction

Miss rate =

Since every instruction access has exactly one memory access to fetch the
instruction, the instruction miss rate is

_3.82/1000

Miss rate ¢ kg insrucion = ~ 1o = 0-004

Since 36% of the instructions are data transfers, the data miss rate is

. 40.9/1000
Miss 1'31316 KB data — W = 0.114

The unified miss rate needs to account for instruction and data accesses:

. 43.3/1000
Miss ralen KB unified — m = 0.0318

As stated above, about 74% of the memory accesses are instruction references.
Thus, the overall miss rate for the split caches is

(74% % 0.004) + (26% x 0.114) = 0.0326

Thus, a 32 KB unified cache has a slightly lower effective miss rate than two 16
KB caches.

The average memory access time formula can be divided into instruction and
data accesses:

Average memory access time
= % instructions X (Hit time + Instruction miss rate X Miss penalty)
+ % data x (Hit time + Data miss rate x Miss penalty)

Therefore, the time for each organization is

Average memory access time,;,
74% X (1 +0.004 x 200) + 26% x (1 +0.114 x 200)
(74% x 1.80) + (26% x 23.80) = 1.332+6.188 = 7.52

Average memory access time

]

unified
74% x (1 +0.0318 x 200) + 26% x (1 + 1 + 0.0318 x 200)
(74% x 7.36) + (26% x 8.36) = 5446 +2.174 = 7.62

C.2 Cache Performance C-17

Hence, the split caches in this example—which offer two memory ports per clock
cycle, thereby avoiding the structural hazard—have a better average memory
access time than the single-ported unified cache despite having a worse effective
miss rate.

Average Memory Access Time and Processor Performance

An obvious question is whether average memory access time due to cache misses
predicts processor performance.

First, there are other reasons for stalls, such as contention due to I/O devices
using memory. Designers often assume that all memory stalls are due to cache
misses, since the memory hierarchy typically dominates other reasons for stalls.
We use this simplifying assumption here, but beware to account for all memory
stalls when calculating final performance.

Second, the answer depends also on the processor. If we have an in-order exe-
cution processor (see Chapter 2), then the answer is basically yes. The processor
stalls during misses, and the memory stall time is strongly correlated to average
memory access time. Let’s make that assumption for now, but we’ll return to out-
of-order processors in the next subsection.

As stated in the previous section, we can model CPU time as

CPU time = (CPU execution clock cycles + Memory stall clock cycles) X Clock cycle time

This formula raises the question of whether the clock cycles for a cache hit
should be considered part of CPU execution clock cycles or part of memory stall
clock cycles. Although either convention is defensible, the most widely accepted
is to include hit clock cycles in CPU execution clock cycles.

We can now explore the impact of caches on performance.

Example

Answer

Let’s use an in-order execution computer for the first example. Assume the cache
miss penalty is 200 clock cycles, and all instructions normally take 1.0 clock
cycles (ignoring memory stalls). Assume the average miss rate is 2%, there is an
average of 1.5 memory references per instruction, and the average number of
cache misses per 1000 instructions is 30. What is the impact on performance
when behavior of the cache is included? Calculate the impact using both misses
per instruction and miss rate.

Memory stall clock cycles
execution Instruction

CPU time = IC x (CP]) x Clock cycle time
The performance, including cache misses, is

CPU timey ;i cache = 1C X (1.0 + (30/1000 X 200)) X Clock cycle time
=1IC X 7.00 X Clock cycle time

Cc-18

Appendix C Review of Memory Hierarchy

CPU time = IC x (CPI

Now calculating performance using miss rate:

. Memory accesses
+ Miss rate X Yemory accesses

i : X Miss penalt)x Clock cycle time
execution Instruction p Y y

CPU time =IC X (1.0 + (1.5 X 2% X 200)) X Clock cycle time

=1C x 7.00 X Clock cycle time

with cache

The clock cycle time and instruction count are the same, with or without a
cache. Thus, CPU time increases sevenfold, with CPI from 1.00 for a “perfect
cache” to 7.00 with a cache that can miss. Without any memory hierarchy at all
the CPI would increase again to 1.0 + 200 x 1.5 or 301—a factor of more than 40
times longer than a system with a cache!

As this example illustrates, cache behavior can have enormous impact on per-
formance. Furthermore, cache misses have a double-barreled impact on a proces-
sor with a low CPI and a fast clock:

1. The lower the CPl, q.tion the higher the relative impact of a fixed number of

cache miss clock cycles.

2. When calculating CPI, the cache miss penalty is measured in processor clock
cycles for a miss. Therefore, even if memory hierarchies for two computers
are identical, the processor with the higher clock rate has a larger number of
clock cycles per miss and hence a higher memory portion of CPL

The importance of the cache for processors with low CPI and high clock rates is
thus greater, and, consequently, greater is the danger of neglecting cache
behavior in assessing performance of such computers. Amdahl’s Law strikes
again!

Although minimizing average memory access time is a reasonable goal—
and we will use it in much of this appendix—keep in mind that the final goal is
to reduce processor execution time. The next example shows how these two can
differ.

Example

What is the impact of two different cache organizations on the performance of a
processor? Assume that the CPl with a perfect cache is 1.6, the clock cycle time
is 0.35 ns, there are 1.4 memory references per instruction, the size of both
caches is 128 KB, and both have a block size of 64 bytes. One cache is direct
mapped and the other is two-way set associative. Figure C.5 shows that for set-
associative caches we must add a multiplexor to select between the blocks in the
set depending on the tag match. Since the speed of the processor can be tied
directly to the speed of a cache hit, assume the processor clock cycle time must
be stretched 1.35 times to accommodate the selection multiplexor of the set-asso-
ciative cache. To the first approximation, the cache miss penalty is 65 ns for
either cache organization. (In practice, it is normally rounded up or down to an
integer number of clock cycles.) First, calculate the average memory access time

Answer

C.2 Cache Performance c-19

and then processor performance. Assume the hit time is 1 clock cycle, the miss
rate of a direct-mapped 128 KB cache is 2.1%, and the miss rate for a two-way
set-associative cache of the same size is 1.9%.

Average memory access time is
Average memory access time = Hit time + Miss rate X Miss penalty
Thus, the time for each organization is

Average memory access time,_y,, = 0.35 + (.021 X 65) = 1.72 ns
Average memory access time_y,, = 0.35 X 1.35 + (019 X 65) = 1.71 ns

The average memory access time is better for the two-way set-associative cache.
The processor performance is

Misses
execution © Tnstruction

CPU time = IC x (CPI x Miss penalty) x Clock cycle time

IC x ir(CPIexecution X Clock cycle time)

Memory accesses

Instruction x Miss penalty x Clock cycle tlme)]

+ (Miss rate X

Substituting 65 ns for (Miss penalty x Clock cycie time), the performance of each
cache organization is

CPU time_,,, = ICx(1.6x0.35+(0.021 X 1.4x65)) = 247 x1C
CPU timezrway = ICx(1.6x0.35%x 1.35+(0.019x 1.4x65)) = 249 xIC

and relative performance is

CPUtime, , 2,49 x Instruction count _ 2.49 _ 1 01

CPU time, .~ 2.47 x Instruction count ~ 2.47

In contrast to the results of average memory access time comparison, the direct-
mapped cache leads to slightly better average performance because the clock
cycle is stretched for all instructions for the two-way set-associative case, even if
there are fewer misses. Since CPU time is our bottom-line evaluation, and since
direct mapped is simpler to build, the preferred cache is direct mapped in this
example.

Miss Penalty and Out-of-Order Execution Processors

For an out-of-order execution processor, how do you define “miss penalty™? Is it
the full latency of the miss to memory, or is it just the “exposed” or nonover-
lapped latency when the processor must stall? This question does not arise in pro-
cessors that stall until the data miss completes.

<-20

Appendix C Review of Memory Hierarchy

Let’s redefine memory stalls to lead to a new definition of miss penalty as
nonoverlapped latency:

Memory stall cycles _ Misses
Instruction Instruction

X (Total miss latency — Overlapped miss latency)

Similarly, as some out-of-order processors stretch the hit time, that portion of the
performance equation could be divided by total hit latency less overlapped hit
latency. This equation could be further expanded to account for contention for
memory resources in an out-of-order processor by dividing total miss latency into
latency without contention and latency due to contention. Let’s just concentrate
on miss latency.

We now have to decide the following:

s Length of memory latency—What to consider as the start and the end of a
memory operation in an out-of-order processor

a Length of latency overlap—What is the start of overlap with the processor (or
equivalently, when do we say a memory operation is stalling the processor)

Given the complexity of out-of-order execution processors, there is no single cor-
rect definition.

Since only committed operations are seen at the retirement pipeline stage, we
say a processor is stalled in a clock cycle if it does not retire the maximum possi-
ble number of instructions in that cycle. We attribute that stall to the first instruc-
tion that could not be retired. This definition is by no means foolproof. For
example, applying an optimization to improve a certain stall time may not always
improve execution time because another type of stall—hidden behind the targeted
stall—may now be exposed.

For latency, we could start measuring from the time the memory instruction is
queued in the instruction window, or when the address is generated. or when the
instruction is actually sent to the memory system. Any option works as long as it
is used in a consistent fashion.

Example

Answer

Let’s redo the example above, but this time we assume the processor with the
longer clock cycle time supports out-of-order execution yet still has a direct-
mapped cache. Assume 30% of the 65 ns miss penalty can be overlapped: that is.
the average CPU memory stall time is now 45.5 ns.

Average memory access time for the out-of-order (OOQO) computer is
Average memory access time, _y,y 000 = 0.35 X 1.35 +(0.021 x45.5) = 1.43 ns
The performance of the OOO cache is

CPU time| .,y 000 = 1€ X (1.6 0.35x 1.35 +(0.021 x 1.4x 45.5)) = 209X IC

~index
CPU execution time
Memory stall cycles
Memory stall cycles

Misses

Instruction

Average memory access time

CPU execution time

CPU execution time

CPU execution time

Memory stall cycles

C.2 Cache Performance C-21

Hence, despite a much slower clock cycle time and the higher miss rate of a
direct-mapped cache, the out-of-order computer can be slightly faster if it can
hide 30% of the miss penalty.

In summary, although the state of the art in defining and measuring memory
stalls for out-of-order processors is complex, be aware of the issues because they
significantly affect performance. The complexity arises because out-of-order pro-
cessors tolerate some latency due to cache misses without hurting performance.
Consequently, designers normally use simulators of the out-of-order processor
and memory when evaluating trade-offs in the memory hierarchy to be sure that
an improvement that helps the average memory latency actually helps program
performance.

To help summarize this section and to act as a handy reference, Figure C.7
lists the cache equations in this appendix.

Cache size
Block size x Set associativity

= (CPU clock cycles + Memory stall cycles) x Clock cycle time
= Number of misses x Miss penalty
= ICx MS— X Miss penalty
Instruction
Memory accesses

= Miss rate X —— -
Instruction

= Hit time + Miss rate X Miss penalty

Memory stall clock cycles

+
Instruction

= ICx (CPI) x Clock cycle time

execution

Misses
execution © [ngtruction

= ICx (CPI x Miss penahy) X Clock cycle time

. Memory accesses
+ Miss rate x 2emory accesses

= fCx (CPIC’“’C”“"" Instruction

x Miss penalty) X Clock cycle time

Misses

Instruction

Average memory access time

Memory stall cycles

= — x (Total miss latency — Overlapped miss latency)
Instruction

= Hit time | + Miss rate; | X (Hit time| , + Miss rate, , X Miss penalty ,)

Misses; | Misses,; ,

Instruction

= x Hit time, , + -

- x Miss penalt
Instruction penaity s

Instruction

Figure C.7 Summary of performance equations in this appendix. The first equation calculates the cache index
size, and the rest help evaluate performance. The final two equations deal with multilevel caches, which are
explained early in the next section. They are included here to help make the figure a useful reference.

~22

Appendix C Review of Memory Hierarchy

C3

Six Basic Cache Optimizations

The average memory access time formula gave us a framework to present cache
optimizations for improving cache performance:

Average memory access time = Hit time + Miss rate X Miss penalty
Hence, we organize six cache optimizations into three categories:

m Reducing the miss rate: larger block size, larger cache size, and higher asso-
ciativity

m Reducing the miss penalty: multilevel caches and giving reads priority over
writes

s Reducing the time to hit in the cache: avoiding address translation when
indexing the cache

Figure C.17 on page C-39 concludes this section with a summary of the imple-
mentation complexity and the performance benefits of these six techniques.

The classical approach to improving cache behavior is to reduce miss rates, and
we present three techniques to do so. To gain better insights into the causes of
misses, we first start with a model that sorts all misses into three simple categories:

m Compulsory—The very first access to a block cannot be in the cache, so the
block must be brought into the cache. These are also called cold-start misses
or first-reference misses.

» Capacity—If the cache cannot contain all the blocks needed during execution
of a program, capacity misses (in addition to compulsory misses) will occur
because of blocks being discarded and later retrieved.

m Conflict—If the block placement strategy is set associative or direct mapped,
conflict misses (in addition to compulsory and capacity misses) will occur
because a block may be discarded and later retrieved if too many blocks map
to its set. These misses are also called collision misses. The idea is that hits in
a fully associative cache that become misses in an n-way set-associative
cache are due to more than n requests on some popular sets.

(Chapter 4 adds a fourth C, for Coherency misses due to cache flushes to keep
multiple caches coherent in a multiprocessor; we won’t consider those here.)

Figure C.8 shows the relative frequency of cache misses, broken down by
the “three C’s.”” Compulsory misses are those that occur in an infinite cache.
Capacity misses are those that occur in a fully associative cache. Conflict misses
are those that occur going from fully associative to eight-way associative, four-
way associative, and so on. Figure C.9 presents the same data graphically. The
top graph shows absolute miss rates; the bottom graph plots the percentage of all
the misses by type of miss as a function of cache size.

C.3 Six Basic Cache Optimizations = C-23

Miss rate components (relative percent)
(sum = 100% of total miss rate)

Degree Total miss
Cachessize (KB) associative rate Compulsory Capacity Conflict

4 1-way 0.098 0.0001 0.1% 0.070 72% 0.027 28%

4 2-way 0.076 0.0001 0.1% 0.070 93% 0005 7%

4 4-way 0.071 0.0001 0.1% 0.070 99% 0.001 1%
4 8-way 0.071 0.0001 0.1% 0.070 100% 0.000 0%

8 1-way 0.068 0.0001 0.1% 0.044 65% 0.024 35%

8 2-way 0.049 0.0001 0.1% 0.044 90% 0.005 10%

8 4-way 0.044 0.0001 0.1% 0.044 99% 0.000 1%

8 8-way 0.044 0.0001 0.1% 0.044 100% 0.000 0%
16 1-way 0.049 0.0001 0.1% 0.040 82% 0.009 17%
16 2-way 0.041 0.0001 0.2% 0.040 98% 0001 2%
16 4-way 0.041 0.0001 0.2% 0.040 99% 0.000 0%
16 8-way 0.041 0.0001 0.2% 0.040 100% 0.000 0%
32 I-way 0.042 0.0001 0.2% 0.037 89% 0.005 11%
32 2-way 0.038 0.0001 0.2% 0.037 99% 0.000 0%
32 4-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%
32 8-way 0.037 0.0001 0.2% 0.037 100% 0.000 0%
64 1-way 0.037 0.0001 0.2% 0.028 T77% 0.008 23%
64 2-way 0.031 0.0001 0.2% 0.028 91% 0.003 9%
64 4-way 0.030 0.0001 0.2% 0.028 95% 0.001 4%
64 8-way 0.029 0.0001 0.2% 0.028 97% 0.001 2%
128 1-way 0.021 0.0001 0.3% 0.019 91% 0.002 8%
128 2-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%
128 4-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%
128 8-way 0.019 0.0001 0.3% 0.019 100% 0.000 0%
256 1-way 0.013 0.0001 0.5% 0.012 94% 0.001 6%
256 2-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%
256 4-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%
256 8-way 0.012 0.0001 0.5% 0.012 99% 0.000 0%
512 1-way 0.008 0.0001 0.8% 0.005 66% 0.003 33%
512 2-way 0.007 0.0001 0.9% 0.005 71% 0.002 28%
512 4-way 0.006 0.0001 1.1% 0.005 91% 0.000 8%
512 8-way 0.006 0.0001 1.1% 0.005 95% 0.000 4%

Figure C.8 Total miss rate for each size cache and percentage of each according to the “three C's.” Compulsory
misses are independent of cache size, while capacity misses decrease as capacity increases, and conflict misses
decrease as associativity increases. Figure C.9 shows the same information graphically. Note that a direct-mapped
cache of size N has about the same miss rate as a two-way set-associative cache of size N/2 up through 128 K. Caches
larger than 128 KB do not prove that rule. Note that the Capacity column is also the fully associative miss rate. Data
were collected as in Figure C.4 using LRU replacement.

Appendix C Review of Memory Hierarchy

0.08 &
0.07 3 1-way
i W 2-way
0.06 C 014 way
2 8-way
Miss rate 0.05 . B Capacity

per type 2 Compulscry

0.03
0.02

0.01

i 8 16 32 64 128 256 512 1024
Cache size (KB)

100% g

80% H 4

60%
Miss rate

per type

) . & 1 way
40% . : €3 2-way
W 4-way
1 8- way
W Capacty
{1 Compuisory

20%

8 16 32 64 128 256 512 1024
Cache size (KB)

Figure C.9 Total miss rate (top) and distribution of miss rate (bottom) for each size
cache according to the three C’s for the data in Figure C.8. The top diagram is the
actual data cache miss rates, while the bottom diagram shows the percentage in each
category. (Space allows the graphs to show one extra cache size than can fit in
Figure C.8))

To show the benefit of associativity, conflict misses are divided into misses
caused by each decrease in associativity. Here are the four divisions of conflict
misses and how they are calculated:

m FEight-wav—Conflict misses due to going from fully associative (no conflicts)
to eight-way associative

B Four-woy—Conflict misses due to going from eight-way associative to four-
way associative

C.3 Six Basic Cache Optimizations C-25

m Two-way—Conflict misses due to going from four-way associative to two-
way associative

s One-way—Conflict misses due to going from two-way associative to one-
way associative (direct mapped)

As we can see from the figures. the compulsory miss rate of the SPEC2000
programs is very small, as it is for many long-running programs.

Having identified the three C’s, what can a computer designer do about them?
Conceptually, conflicts are the easiest: Fully associative placement avoids all
conflict misses. Full associativity is expensive in hardware, however, and may
slow the processor clock rate (see the example on page C-28), leading to lower
overall performance.

There is little to be done about capacity except to enlarge the cache. If the
upper-level memory is much smaller than what is needed for a program, and a
significant percentage of the time is spent moving data between two levels in the
hierarchy, the memory hierarchy is said to thrash. Because so many replacements
are required, thrashing means the computer runs close to the speed of the lower-
level memory, or maybe even slower because of the miss overhead.

Another approach to improving the three C’s is to make blocks larger to
reduce the number of compulsory misses, but, as we will see shortly, large blocks
can increase other kinds of misses.

The three C’s give insight into the cause of misses, but this simple model
has its limits: it gives you insight into average behavior but may not explain an
individual miss. For example, changing cache size changes conflict misses as
well as capacity misses, since a larger cache spreads out references to more
blocks. Thus, a miss might move from a capacity miss to a conflict miss as
cache size changes. Note that the three C’s also ignore replacement policy,
since it is difficult to model and since, in general, it is less significant. In spe-
cific circumstances the replacement policy can actually lead to anomalous
behavior, such as poorer miss rates for larger associativity, which contradicts
the three C’s model. (Some have proposed using an address trace to determine
optimal placement in memory to avoid placement misses from the three C’s
model; we’ve not followed that advice here.)

Alas, many of the techniques that reduce miss rates also increase hit time or
miss penalty. The desirability of reducing miss rates using the three optimizations
must be balanced against the goal of making the whole system fast. This first
example shows the importance of a balanced perspective.

First Optimization: Larger Block Size to Reduce Miss Rate

The simplest way to reduce miss rate is to increase the block size. Figure C.10
shows the trade-off of block size versus miss rate for a set of programs and cache
sizes. Larger block sizes will reduce also compulsory misses. This reduction
occurs because the principle of locality has two components: temporal locality
and spatial locality. Larger blocks take advantage of spatial locality.

C-26

Appendix C Review of Memory Hierarchy

10%

Miss

rate 5% 4

0% L L t J 256K
16 32 64 128 256
Block size

Figure C.10 Miss rate versus block size for five different-sized caches. Note that miss
rate actually goes up if the block size is too large relative to the cache size.Each line rep-
resents a cache of different size. Figure C.11 shows the data used to plot these lines.
Unfortunately, SPEC2000 traces would take too long if block size were included, so
these data are based on SPEC92 on a DECstation 5000 [Gee et al. 1993].

At the same time, larger blocks increase the miss penalty. Since they reduce
the number of blocks in the cache, larger blocks may increase conflict misses and
even capacity misses if the cache is small. Clearly, there is little reason to
increase the block size to such a size that it increases the miss rate. There is also
no benefit to reducing miss rate if it increases the average memory access time.
The increase in miss penalty may outweigh the decrease in miss rate.

Example

Answer

Figure C.11 shows the actual miss rates plotted in Figure C.10. Assume the mem-
ory system takes 80 clock cycles of overhead and then delivers 16 bytes every 2
clock cycles. Thus, it can supply 16 bytes in 82 clock cycles, 32 bytes in 84 clock
cycles, and so on. Which block size has the smallest average memory access time
for each cache size in Figure C.11?

Average memory access time is

Average memory access time = Hit time + Miss rate X Miss penalty

If we assume the hit time is 1 clock cycle independent of block size, then the
access time for a 16-byte block in a 4 KB cache is

Average memory access time = | + (8.57% X 82) = 8.027 clock cycles
and for a 256-byte block in a 256 KB cache the average memory access time is

Average memory access time = 1 + (0.49% X 112) = 1.549 clock cycles

C.3 Six Basic Cache Optimizations = C-27

Cache size
Block size 4K 16K 64K 256K
16 8.57% 3.94% 2.04% 1.09%
32 7.24% 2.87% 1.35% 0.70%
64 7.00% 2.64% 1.06% 0.51%
128 7.78% 2.77% 1.02% 0.49%
256 9.51% 3.29% 1.15% 0.49%

Figure C.11 Actual miss rate versus block size for five different-sized caches in
Figure C.10. Note that for a 4 KB cache, 256-byte blocks have a higher miss rate than
32-byte blocks. In this example, the cache would have to be 256 KB in order for a 256-
byte block to decrease misses.

Cache size
Block size Miss penaity 4K 16K 64K 256K
16 82 8.027 4.231 2.673 1.894
32 84 7.082 3411 2.134 1.588
64 88 7.160 3.323 1.933 1.449
128 96 8.469 3.659 1.979 1.470
256 112 11.651 4.685 2.288 1.549

Figure C.12 Average memory access time versus block size for five different-sized
caches in Figure C.10. Block sizes of 32 and 64 bytes dominate. The smallest average
time per cache size is boldfaced.

Figure C.12 shows the average memory access time for all block and cache sizes
between those two extremes. The boldfaced entries show the fastest block size
for a given cache size: 32 bytes for 4 KB and 64 bytes for the larger caches.
These sizes are, in fact, popular block sizes for processor caches today.

As in all of these techniques, the cache designer is trying to minimize both
the miss rate and the miss penalty. The selection of block size depends on both
the latency and bandwidth of the lower-level memory. High latency and high
bandwidth encourage large block size since the cache gets many more bytes per
miss for a small increase in miss penalty. Conversely, low latency and low band-
width encourage smaller block sizes since there is little time saved from a larger
block. For example, twice the miss penalty of a small block may be close to the
penalty of a block twice the size. The larger number of small blocks may also
reduce conflict misses. Note that Figures C.10 and C.12 show the difference

C-28

Appendix C Review of Memory Hierarchy

between selecting a block size based on minimizing miss rate versus minimizing
average memory access time.

After seeing the positive and negative impact of larger block size on compul-
sory and capacity misses, the next two subsections look at the potential of higher
capacity and higher associativity.

Second Optimization: Larger Caches to Reduce Miss Rate

The obvious way to reduce capacity misses in Figures C.8 and C.9 is to increase
capacity of the cache. The obvious drawback is potentially longer hit time and
higher cost and power. This technique has been especially popular in off-chip
caches.

Third Optimization: Higher Associativity to Reduce Miss Rate

Figures C.§ and C.9 show how miss rates improve with higher associativity.
There are two general rules of thumb that can be gleaned from these figures. The
first is that eight-way set associative is for practical purposes as effective in
reducing misses for these sized caches as fully associative. You can see the ditfer-
ence by comparing the eight-way entries to the capacity miss column in Figure
C.8, since capacity misses are calculated using fully associative caches.

The second observation, called the 2:/ cache rule of thumb, is that a direct-
mapped cache of size N has about the same miss rate as a two-way set-associative
cache of size N/2. This held in three C’s figures for cache sizes less than 128 KB.

Like many of these examples, improving one aspect of the average memory
access time comes at the expense of another. Increasing block size reduces miss
rate while increasing miss penalty, and greater associativity can come at the cost
of increased hit time. Hence, the pressure of a fast processor clock cycle encour-
ages simple cache designs, but the increasing miss penalty rewards associativity,
as the following example suggests.

Example

Assume higher associativity would increase the clock cycle time as listed below:

Clock cycle time, ., = 1.36 X Clock cycle time_,,
Clock cycle timey.y,,, = 1.44 X Clock cycle time_,,
Clock cycle timey_,,,, = 1.52 X Clock cycle time _,,

Assume that the hit time is | clock cycle, that the miss penalty for the direct-
mapped case is 25 clock cycles to a level 2 cache (see next subsection) that never
misses, and that the miss penalty need not be rounded to an integral number of
clock cycles. Using Figure C.8 for miss rates, for which cache sizes are each of
these three statements true?

Average memory access limey_,,, < AVerage memory access imey.,,
Average memory access timey ., < Average memory access times .,
Average memory access time .,y < Average memory access Ume | _y,,

Answer

C.3 Six Basic Cache Optimizations Cc-29

Associativity

Cache size (KB) One-way Two-way Four-way Eight-way

4 3.44 3.25 322 3.28

8 2.69 2.58 2.55 2.62

16 223 2.40 2.46 2.53

32 2.06 2.30 2.37 245

64 1.92 2.14 2.18 2.25

128 1.52 1.84 1.92 2.00

256 1.32 1.66 1.74 1.82

512 1.20 1.55 1.59 1.66

Figure C.13 Average memory access time using miss rates in Figure C.8 for parame-
ters in the example. Boldface type means that this time is higher than the number to
the left; that is, higher associativity increases average memory access time.

Average memory access time for each associativity is

Average memory access timeg_,,, = Hit timeg. , + Miss rateg.,,, X Miss penaltyg ., = 1.52 + Miss rateg_y,, X 25
Average mMemory access timey_y,y = 1.44 + Miss ratey g, X 25
Average memory access time,_,, = 1.36 + Miss rate, ., X 25
Average memory access time . = 1.00 + Miss rate, . X 25

The miss penalty is the same time in each case, so we leave it as 25 clock cycles.
For example, the average memory access time for a 4 KB direct-mapped cache is

Average memory access time,_y,,, = 1.00 + (0.098 X 25) =3.44
and the time for a 512 KB, eight-way set-associative cache is
Average memory access timey_y,, = 1.52 + (0.006 X 25) = 1.66

Using these formulas and the miss rates from Figure C.8, Figure C.13 shows the
average memory access time for each cache and associativity. The figure shows
that the formulas in this example hold for caches less than or equal to 8 KB for up
to four-way associativity. Starting with 16 KB, the greater hit time of larger asso-
ciativity outweighs the time saved due to the reduction in misses.

Note that we did not account for the slower clock rate on the rest of the program
in this example, thereby understating the advantage of direct-mapped cache.

Fourth Optimization: Multilevel Caches to Reduce Miss Penalty

Reducing cache misses had been the traditional focus of cache research, but the
cache performance formula assures us that improvements in miss penalty can be
just as beneficial as improvements in miss rate. Moreover, Figure 5.2 on page 289

C-30

®

Appendix C Review of Memory Hierarchy

shows that technology trends have improved the speed of processors faster than
DRAMs, making the relative cost of miss penalties increase over time.

This performance gap between processors and memory leads the architect to
this question: Should I make the cache faster to keep pace with the speed of pro-
cessors, or make the cache larger to overcome the widening gap between the pro-
cessor and main memory?

One answer is, do both. Adding another level of cache between the original
cache and memory simplifies the decision. The first-level cache can be small
enough to match the clock cycle time of the fast processor. Yet the second-level
cache can be large enough to capture many accesses that would go to main mem-
ory, thereby lessening the effective miss penalty.

Although the concept of adding another level in the hierarchy is straightfor-
ward, it complicates performance analysis. Definitions for a second level of
cache are not always straightforward. Let’s start with the definition of average
memory access time for a two-level cache. Using the subscripts L1 and L2 to
refer, respectively, to a first-level and a second-level cache, the original formula is

Average memory access time = Hit time | + Miss rate; ; X Miss penaltyy |

and
Miss penalty; ; = Hit timey , + Miss rate; , X Miss penalty| ,

SO

Average memory access time = Hit timey) + Miss ratey
x (Hit timey , + Miss rate; ; X Miss penalty; »)

In this formula, the second-level miss rate is measured on the leftovers from the
first-level cache. To avoid ambiguity, these terms are adopted here for a two-level
cache system:

w Local miss rate—This rate is simply the number of misses in a cache divided
by the total number of memory accesses to this cache. As you would expect,
for the first-level cache it is equal to Miss ratey ;, and for the second-level
cache it is Miss rate; ,.

8 Global miss rate—The number of misses in the cache divided by the total
number of memory accesses generated by the processor. Using the terms
above, the global miss rate for the first-level cache is still just Miss rate; ;, but
for the second-level cache it is Miss rate; | X Miss ratey ,.

This local miss rate is large for second-level caches because the first-level
cache skims the cream of the memory accesses. This is why the global miss rate
is the more useful measure: It indicates what fraction of the memory accesses
that leave the processor go all the way to memory.

Here is a place where the misses per instruction metric shines. Instead of con-
fusion about local or global miss rates, we just expand memory stalls per instruc-
tion to add the impact of a second-level cache.

C.3 Six Basic Cache Optimizations c-31

Average memory stalls per instruction = Misses per instruction; ; x Hit time; ,
+ Misses per instruction; , X Miss penalty; 5

Example Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 misses in the second-level cache. What are the various miss rates?
Assume the miss penalty from the L2 cache to memory is 200 clock cycles, the
hit time of the L2 cache is 10 clock cycles, the hit time of L1 is 1 clock cycle, and
there are 1.5 memory references per instruction. What is the average memory
access time and average stall cycles per instruction? Ignore the impact of writes.

Answer The miss rate (either local or global) for the first-level cache is 40/1000 or 4%.
The local miss rate for the second-level cache is 20/40 or 50%. The global miss
rate of the second-level cache is 20/1000 or 2%. Then

Average memory access time = Hit time | + Miss rate; ; X (Hit timey , + Miss rate| , X Miss penalty ,)
=1+4% %X (10+ 50% x 200) = 1 + 4% x 110 = 5.4 clock cycles

To see how many misses we get per instruction, we divide 1000 memory refer-
ences by 1.5 memory references per instruction, which yields 667 instructions.
Thus, we need to multiply the misses by 1.5 to get the number of misses per 1000
instructions. We have 40 x 1.5 or 60 L1 misses, and 20 x 1.5 or 30 L2 misses, per
1000 instructions. For average memory stalls per instruction, assuming the
misses are distributed uniformly between instructions and data:

Average memory stalls per instruction = Misses per instruction ; X Hit time; , + Misses per instruction; ,
x Miss penaltyy 5

= (60/1000) x 10 + (30/1000) x 200
=0.060 x 10 + 0.030 x 200 = 6.6 clock cycles

If we subtract the L1 hit time from AMAT and then multiply by the average num-
ber of memory references per instruction, we get the same average memory stalls
per instruction:

(54-1.0)x1.5=44x1.5=6.6 clock cycles

As this example shows, there may be less confusion with multilevel caches when
calculating using misses per instruction versus miss rates.

Note that these formulas are for combined reads and writes, assuming a write-
back first-level cache. Obviously, a write-through first-level cache will send all
writes to the second level, not just the misses, and a write buffer might be used.

Figures C.14 and C.15 show how miss rates and relative execution time change
with the size of a second-level cache for one design. From these figures we can gain
two insights. The first is that the global cache miss rate is very similar to the single
cache miss rate of the second-level cache, provided that the second-level cache is
much larger than the first-level cache. Hence, our intuition and knowledge about

C-32 Appendix C Review of Memory Hierarchy

100% |

90% | ~4— { ocal miss rate
~®-— Global miss rate

~—4— Single cache miss rate

80% |

70%

60% |
Miss rate 50% I

40% |

3%
30% [34%

20% |

10%F 6% 5% 4% 4% 4% 3% 2% 2% 2% 1% 1%
% W’m

4 8 16 32 64 128 256 512 1024 2048 4096
Cache size (KB)

Figure C.14 Miss rates versus cache size for multilevel caches. Second-level caches
smaller than the sum of the two 64 KB first-level caches make little sense, as reflected in
the high miss rates. After 256 KB the single cache is within 10% of the global miss rates.
The miss rate of a single-level cache versus size is plotted against the local miss rate and
global miss rate of a second-level cache using a 32 KB first-level cache.The L2 caches (uni-
fied) were two-way set associative with LRU replacement. Each had split L1 instruction
and data caches that were 64 KB two-way set associative with LRU replacement.The block
size for both L1 and L2 caches was 64 bytes. Data were collected as in Figure C4.

8192 M L2 hit = 8 clock cycles
B3 L2 hit = 16 clock cycles

4096

2048
Second-level
cache size (KB)
1024
512
234
256 | 239

1.00 1.25 1.50 1.75 2.00 2.25 2.50
Relative execution time

Figure C.15 Relative execution time by second-level cache size. The two bars are for
different clock cycles for an L2 cache hit. The reference execution time of 1.00 is for an
8192 KB second-level cache with a 1-clock-cycle latency on a second-level hit. These
data were collected the same way as in Figure C.14, using a simulator to imitate the
Alpha 21264.

C.3 Six Basic Cache Optimizations C-33

the first-level caches apply. The second insight is that the local cache miss rate is
not a good measure of secondary caches; it is a function of the miss rate of the first-
level cache, and hence can vary by changing the first-level cache. Thus, the global
cache miss rate should be used when evaluating second-level caches.

With these definitions in place, we can consider the parameters of second-
level caches. The foremost difference between the two levels is that the speed of
the first-level cache affects the clock rate of the processor, while the speed of the
second-level cache only affects the miss penalty of the first-level cache. Thus, we
can consider many alternatives in the second-level cache that would be ill chosen
for the first-level cache. There are two major questions for the design of the
second-level cache: Will it lower the average memory access time portion of the
CPI, and how much does it cost?

The initial decision is the size of a second-level cache. Since everything in the
first-level cache is likely to be in the second-level cache, the second-level cache
should be much bigger than the first. If second-level caches are just a little bigger,
the local miss rate will be high. This observation inspires the design of huge
second-level caches—the size of main memory in older computers'

One question is whether set associativity makes more sense for second-level
caches.

Example

Answer

Given the data below, what is the impact of second-level cache associativity on
its miss penalty?
a Hit time » for direct mapped = 10 clock cycles.

m Two-way set associativity increases hit time by 0.1 clock cycles to 10.1 clock
cycles.

m Local miss rate; 5 for direct mapped = 25%.
= Local miss ratey , for two-way set associative = 20%.

= Miss penalty; » = 200 clock cycles.

For a direct-mapped second-level cache, the first-level cache miss penalty is

Miss penalty |_y,y 12 = 10 + 25% % 200 = 60.0 clock cycles

Adding the cost of associativity increases the hit cost only 0.1 clock cycles, mak-
ing the new first-level cache miss penalty

Miss penaltys_y,y 12 = 10.1 + 20% % 200 = 50.1 clock cycles

In reality, second-level caches are almost always synchronized with the first-level
cache and processor. Accordingly, the second-level hit time must be an integral
number of clock cycles. If we are lucky, we shave the second-level hit time to

C-34

Appendix C Review of Memory Hierarchy

10 cycles; if not, we round up to 11 cycles. Either choice is an improvement over
the direct-mapped second-level cache:

Miss penalty; .y 12 = 10 + 20% % 200 = 50.0 clock cycles
Miss penalty; a1 2 = 11 + 20% % 200 = 51.0 clock cycles

Now we can reduce the miss penalty by reducing the miss rate of the second-
level caches.

Another consideration concerns whether data in the first-level cache is in the
second-level cache. Multilevel inclusion is the natural policy for memory hierar-
chies: L1 data are always present in L2. Inclusion is desirable because consis-
tency between /O and caches (or among caches in a multiprocessor) cam be
determined just by checking the second-level cache.

One drawback to inclusion is that measurements can suggest smaller blocks
for the smaller first-level cache and larger blocks for the larger second-level
cache. For example, the Pentium 4 has 64-byte blocks in its L1 caches and 128-
byte blocks in its L2 cache. Inclusion can still be maintained with more work on
a second-level miss. The second-level cache must invalidate all first-level blocks
that map onto the second-level block to be replaced, causing a slightly higher
first-level miss rate. To avoid such problems, many cache designers keep the
block size the same in all levels of caches.

However, what if the designer can only afford an L2 cache that is slightly big-
ger than the L1 cache? Should a significant portion of its space be used as a
redundant copy of the L1 cache? In such cases a sensible opposite policy is mul-
tilevel exclusion: L1 data is never found in an L2 cache. Typically, with exclusion
a cache miss in L1 results in a swap of blocks between L1 and L2 instead of a
replacement of an L1 block with an L2 block. This policy prevents wasting space
in the L2 cache. For example, the AMD Opteron chip obeys the exclusion prop-
erty using two 64 KB L1 caches and 1 MB L2 cache.

As these issues illustrate, although a novice might design the first- and
second-level caches independently, the designer of the first-level cache has a sim-
pler job given a compatible second-level cache. It is less of a gamble to use a
write through, for example, if there is a write-back cache at the next level to act
as a backstop for repeated writes and it uses multilevel inclusion.

The essence of all cache designs is balancing fast hits and few misses. For
second-level caches, there are many fewer hits than in the first-level cache, so the
emphasis shifts to fewer misses. This insight leads to much larger caches and
techniques to lower the miss rate, such as higher associativity and larger blocks.

Fifth Optimization: Giving Priority to Read Misses over Writes
to Reduce Miss Penalty

This optimization serves reads before writes have been completed. We start with
looking at the complexities of a write buffer.

C.3 Six Basic Cache Optimizations C35

With a write-through cache the most important improvement is a write buffer
of the proper size. Write buffers, however, do complicate memory accesses
because they might hold the updated value of a location needed on a read miss.

Example

Answer

Look at this code sequence:

SW R3, 512(RO) ;M[512] «R3 (cache index 0)
LW R1, 1024(R0O) ;R1 « M[1024] (cache index 0)
LW R2, 512(R0) ;R2 « M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024 to the
same block, and a four-word write buffer that is not checked on a read miss. Will
the value in R2 always be equal to the value in R3?

Using the terminology from Chapter 2, this is a read-after-write data hazard in
memory. Let’s follow a cache access to see the danger. The data in R3 are placed
into the write buffer after the store. The following load uses the same cache index
and is therefore a miss. The second load instruction tries to put the value in loca-
tion 512 into register R2; this also results in a miss. If the write buffer hasn’t
completed writing to location 512 in memory, the read of location 512 will put
the old, wrong value into the cache block, and then into R2. Without proper pre-
cautions, R3 would not be equal to R2!

The simplest way out of this dilemma is for the read miss to wait until the
write buffer is empty. The alternative is to check the contents of the write buffer
on a read miss, and if there are no conflicts and the memory system is available,
let the read miss continue. Virtually all desktop and server processors use the lat-
ter approach, giving reads priority over writes.

The cost of writes by the processor in a write-back cache can also be reduced.
Suppose a read miss will replace a dirty memory block. Instead of writing the
dirty block to memory, and then reading memory, we could copy the dirty block
to a buffer, then read memory, and then write memory. This way the processor
read, for which the processor is probably waiting, will finish sooner. Similar to
the previous situation. if a read miss occurs, the processor can either stall until the
buffer is empty or check the addresses of the words in the buffer for conflicts.

Now that we have five optimizations that reduce cache miss penalties or miss
rates, it is time to look at reducing the final component of average memory access
time. Hit time is critical because it can affect the clock rate of the processor; in
many processors today the cache access time limits the clock cycle rate, even for
processors that take multiple clock cycles to access the cache. Hence, a fast hit
time is multiplied in importance beyond the average memory access time formula
because it helps everything.

C-36

Appendix C Review of Memory Hierarchy

Sixth Optimization: Avoiding Address Translation during
Indexing of the Cache to Reduce Hit Time

Even a small and simple cache must cope with the translation of a virtual address
from the processor to a physical address to access memory. As described in Sec-
tion C.4. processors treat main memory as just another level of the memory hier-
archy, and thus the address of the virtual memory that exists on disk must be
mapped onto the main memory.

The guideline of making the common case fast suggests that we use virtual
addresses for the cache, since hits are much more common than misses. Such
caches are termed virtual caches, with physical cache used to identify the tradi-
tional cache that uses physical addresses. As we will shortly see, it is important to
distinguish two tasks: indexing the cache and comparing addresses. Thus, the
issues are whether a virtual or physical address is used to index the cache and
whether a virtual or physical address is used in the tag comparison. Full virtual
addressing for both indices and tags eliminates address translation time from a
cache hit. Then why doesn’t everyone build virtually addressed caches?

One reason is protection. Page-level protection is checked as part of the vir-
tual to physical address translation, and it must be enforced no matter what. One
solution is to copy the protection information from the TLB on a miss, add a field
to hold it, and check it on every access to the virtually addressed cache.

Another reason is that every time a process is switched, the virtual addresses
refer to different physical addresses, requiring the cache to be flushed.
Figure C.16 shows the impact on miss rates of this flushing. One solution is to
increase the width of the cache address tag with a process-identifier tag (PID). If
the operating system assigns these tags to processes, it only need flush the cache
when a PID is recycled; that is. the PID distinguishes whether or not the data in
the cache are for this program. Figure C.16 shows the improvement in miss rates
by using PIDs to avoid cache flushes.

A third reason why virtual caches are not more popular is that operating sys-
tems and user programs may use two different virtual addresses for the same
physical address. These duplicate addresses, called synonyms or aliases, could
result in two copies of the same data in a virtual cache: if one is modified, the
other will have the wrong value. With a physical cache this wouldn’t happen.
since the accesses would first be translated to the same physical cache block.

Hardware solutions to the synonym problem, called antialiasing, guarantee
every cache block a unique physical address. The Opteron uses a 64 KB instruc-
tion cache with an 4 KB page and two-way set associativity. hence the hardware
must handle aliases involved with the three virtual address bits in the set index. It
avoids aliases by simply checking all eight possible locations on a miss—two
blocks in each of four sets—to be sure that none match the physical address of
the data being fetched. If one is found, it is invalidated, so when the new data are
loaded into the cache their physical address is guaranteed to be unique.

Software can make this problem much easier by forcing aliases to share some
address bits. An older version of UNIX from Sun Microsystems, for example.

C.3 Six Basic Cache Optimizations C-37

20%
0.6%
04%

18%}

{3 Purge
| PIDs

0.5% = Uniprocess
1.8%
i8.8% 0.6%
13.0%
27%
3.4%
8.7% B 0.6%
3.9%
© 41 0 43% 43% 43%
3.8%
27% m04%
1O, o, .
. lo‘%% 0% MS%: MO Mo
4K 8K

64K 128K 256K 512K 1024K

11%

14%+

12%

Miss
rate 10%+
8%

8%t

4%}

0010

Cache size

Figure C.16 Miss rate versus virtually addressed cache size of a program measured
three ways: without process switches (uniprocess), with process switches using a
process-identifier tag (PID), and with process switches but without PIDs (purge).
PIDs increase the uniprocess absolute miss rate by 0.3% to 0.6% and save 0.6% to 4.3%
over purging. Agarwal [1987] collected these statistics for the Ultrix operating system
running on a VAX, assuming direct-mapped caches with a block size of 16 bytes. Note
that the miss rate goes up from 128K to 256K. Such nonintuitive behavior can occur in
caches because changing size changes the mapping of memory blocks onto cache
blocks, which can change the conflict miss rate.

required all aliases to be identical in the last 18 bits of their addresses; this
restriction is called page coloring. Note that page coloring is simply set-associa-
tive mapping applied to virtual memory: The 4 KB (2'?) pages are mapped using
64 (2%) sets to ensure that the physical and virtual addresses match in the last 18
bits. This restriction means a direct-mapped cache that is 2% (256K) bytes or
smaller can never have duplicate physical addresses for blocks. From the per-
spective of the cache. page coloring effectively increases the page offset, as soft-
ware guarantees that the last few bits of the virtual and physical page address are
identical.

The final area of concern with virtual addresses is I/O. /O typically uses
physical addresses and thus would require mapping to virtual addresses to inter-
act with a virtual cache. (The impact of I/O on caches is further discussed in
Chapter 6.)

C-38

Appendix C Review of Memory Hierarchy

C4

One alternative to get the best of both virtual and physical caches is to use
part of the page offset—the part that is identical in both virtual and physical
addresses-—to index the cache. At the same time as the cache is being read using
that index, the virtual part of the address is translated, and the tag match uses
physical addresses.

This alternative allows the cache read to begin immediately, and yet the tag
comparison is still with physical addresses. The limitation of this virtually
indexed, physically ragged alternative is that a direct-mapped cache can be no
bigger than the page size. For example, in the data cache in Figure C.5 on page
C-13, the index is 9 bits and the cache block offset is 6 bits. To use this trick, the
virtual page size would have to be at least 2046 bytes or 32 KB. If not, a portion
of the index must be translated from virtual to physical address.

Associativity can keep the index in the physical part of the address and yet
still support a large cache. Recall that the size of the index is controlled by this
formula:

Index _ Cache size
"~ Block size x Set associativity

For example, doubling associativity and doubling the cache size does not change
the size of the index. The IBM 3033 cache, as an extreme example, is 16-way set
associative, even though studies show there is little benefit to miss rates above 8-
way set associativity. This high associativity allows a 64 KB cache to be
addressed with a physical index. despite the handicap of 4 KB pages in the IBM
architecture.

Summary of Basic Cache Optimization

The techniques in this section to improve miss rate, miss penalty, and hit time
generally impact the other components of the average memory access equation as
well as the complexity of the memory hierarchy. Figure C.17 summarizes these
techniques and estimates the impact on complexity, with + meaning that the tech-
nique improves the factor, — meaning it hurts that factor, and blank meaning it has
no impact. No optimization in this figure helps more than one category.

Virtual Memory

...a system has been devised to make the core drum combination appear to the
programmer as a single level store, the requisite transfers taking place
automatically.

Kilburn et al.[1962]

At any instant in time computers are running multiple processes. each with its
own address space. (Processes are described in the next section.) It would be too
expensive to dedicate a full address space worth of memory for each process.
especially since many processes use only a small part of their address space.

C.4 Virtual Memory Cc-39

Hit Miss Miss Hardware
Technique time penalty rate complexity Comment
Larger block size - + 0 Trivial; Pentium 4 L2 uses 128 bytes
Larger cache size - + 1 Widely used, especially for L2
caches
Higher associativity - + 1 Widely used
Multilevel caches + 2 Costly hardware; harder if L1 block

size # L2 block size; widely used

Read priority over writes

+ ! Widely used

Avoiding address translation during + 1 Widely used

cache indexing

Figure C.17 Summary of basic cache optimizations showing impact on cache performance and complexity for
the techniques in this appendix. Generally a technique helps only one factor. + means that the technique improves
the factor, - means it hurts that factor, and blank means it has no impact. The complexity measure is subjective, with
0 being the easiest and 3 being a challenge.

Hence, there must be a means of sharing a smaller amount of physical memory
among many processes.

One way to do this, virtual memory, divides physical memory into blocks and
allocates them to different processes. Inherent in such an approach must be a pro-
tection scheme that restricts a process to the blocks belonging only to that pro-
cess. Most forms of virtual memory also reduce the time to start a program, since
not all code and data need be in physical memory before a program can begin.

Although protection provided by virtual memory is essential for current com-
puters, sharing is not the reason that virtual memory was invented. If a program
became too large for physical memory, it was the programmer’s job to make it fit.
Programmers divided programs into pieces, then identified the pieces that were
mutually exclusive, and loaded or unloaded these overlays under user program
control during execution. The programmer ensured that the program never tried
to access more physical main memory than was in the computer, and that the
proper overlay was loaded at the proper time. As you can well imagine, this
responsibility eroded programmer productivity.

Virtual memory was invented to relieve programmers of this burden; it auto-
matically manages the two levels of the memory hierarchy represented by main
memory and secondary storage. Figure C.18 shows the mapping of virtual mem-
ory to physical memory for a program with four pages.

In addition to sharing protected memory space and automatically managing
the memory hierarchy, virtual memory also simplifies loading the program for
execution. Called relocation, this mechanism allows the same program to run in
any location in physical memory. The program in Figure C.18 can be placed any-
where in physical memory or disk just by changing the mapping between them.
(Prior to the popularity of virtual memory, processors would include a relocation
register just for that purpose.) An alternative to a hardware solution would be
software that changed all addresses in a program each time it was run.

C-40 Appendix C Review of Memory Hierarchy

Virtual Physical
address address
0 A 0
4K B 4K
8K C 8K
12K D 12K Physical
16K main memory
Virtual memory 20K
24K
28K

Disk

— o)

Figure C.18 The logical program in its contiguous virtual address space is shown on
the left. It consists of four pages A, B, C, and D.The actual location of three of the blocks
is in physical main memory and the other is located on the disk.

Several general memory hierarchy ideas from Chapter 1 about caches are
analogous to virtual memory, although many of the terms are different. Page or
segment is used for block, and page fault or address fault is used for miss. With
virtual memory, the processor produces virtual addresses that are translated by a
combination of hardware and software to physical addresses, which access main
memory. This process is called memory mapping or address translation. Today,
the two memory hierarchy levels controlled by virtual memory are DRAMs and
magnetic disks. Figure C.19 shows a typical range of memory hierarchy parame-
ters for virtual memory.

There are further differences between caches and virtual memory beyond
those quantitative ones mentioned in Figure C.19:

m Replacement on cache misses is primarily controlled by hardware, while vir-
tual memory replacement is primarily controlled by the operating system.
The longer miss penalty means it’s more important to make a good decision,
so the operating system can be involved and take time deciding what to
replace.

s The size of the processor address determines the size of virtual memory, but
the cache size is independent of the processor address size.

s In addition to acting as the lower-level backing store for main memory in the
hierarchy, secondary storage is also used for the file system. In fact, the file
system occupies most of secondary storage. It is not normally in the address
space.

Virtual memory also encompasses several related techniques. Virtual memory
systems can be categorized into two classes: those with fixed-size blocks, called

C.4 Virtual Memory -4

Parameter First-level cache Virtual memory

Block (page) size 16-128 bytes 4096—65,536 bytes

Hit time 1-3 clock cycles 100-200 clock cycles

Miss penalty 8-200 clock cycles 1,000,000-10,000,000 clock cycles
(access time) (6-160 clock cycles) (800,000-8,000,000 clock cycles)
(transfer time) (240 clock cycles) (200,000-2,000,000 ciock cycles)

Miss rate 0.1-10% 0.00001-0.001%

Address mapping ~ 25-45 bit physical address 32-64 bit virtual address to 25-45
to 14-20 bit cache address bit physical address

Figure C.19 Typical ranges of parameters for caches and virtual memory. Virtual
memory parameters represent increases of 10-1,000,000 times over cache parameters.
Normally first-level caches contain at most 1 MB of data, while physical memory con-
tains 256 MB to 1 TB.

l Code I [Data ’

e [[[T [T] LLTT]
sgmeriaion | | 1] | | [1] []

Figure C.20 Example of how paging and segmentation divide a program.

pages, and those with variable-size blocks, called segments. Pages are typically
fixed at 4096 to 8192 bytes, while segment size varies. The largest segment sup-
ported on any processor ranges from 216 bytes up to 232 bytes; the smallest seg-
ment is 1 byte. Figure C.20 shows how the two approaches might divide code
and data.

The decision to use paged virtual memory versus segmented virtual memory
affects the processor. Paged addressing has a single fixed-size address divided
into page number and offset within a page, analogous to cache addressing. A sin-
gle address does not work for segmented addresses; the variable size of segments
requires 1 word for a segment number and 1 word for an offset within a segment,
for a total of 2 words. An unsegmented address space is simpler for the compiler.

The pros and cons of these two approaches have been well documented in
operating systems textbooks; Figure C.2} summarizes the arguments. Because of
the replacement problem (the third line of the figure), few computers today use
pure segmentation. Some computers use a hybrid approach, called paged
segments, in which a segment is an integral number of pages. This simplifies
replacement because memory need not be contiguous, and the full segments need
not be in main memory. A more recent hybrid is for a computer to offer multiple
page sizes, with the larger sizes being powers of 2 times the smallest page size.

Appendix C Review of Memory Hierarchy

Page Segment
Words per address One Two (segment and offset)
Programmer visible? Invisible to application May be visible to application
programmer programmer

Replacing a block

Trivial (all blocks are the
same size)

Hard (must find contiguous,
variable-size, unused portion of
main memory)

Memory use inefficiency

Internal fragmentation
(unused portion of page)

External fragmentation (unused
pieces of main memory)

Efficient disk traffic

Yes (adjust page size to

Not always (small segments may

balance access time and
transfer time)

transfer just a few bytes)

Figure C.21 Paging versus segmentation. Both can waste memory, depending on the
block size and how well the segments fit together in main memory. Programming lan-
guages with unrestricted pointers require both the segment and the address to be
passed. A hybrid approach, called paged segments, shoots for the best of both worlds:
Segments are composed of pages, so replacing a block is easy, yet a segment may be
treated as a logical unit.

The IBM 405CR embedded processor, for example, allows 1 KB, 4 KB (2° x
1 KB), 16 KB (2* x 1 KB), 64 KB (2° x 1 KB), 256 KB (2® x 1 KB), 1024 KB
(2'9x 1 KB), and 4096 KB (22 x 1 KB) to act as a single page.

Four Memory Hierarchy Questions Revisited

We are now ready to answer the four memory hierarchy questions for virtual
memory.

Q1:Where Can a Block Be Placed in Main Memory?

The miss penalty for virtual memory involves access to a rotating magnetic stor-
age device and is therefore quite high. Given the choice of lower miss rates or a
simpler placement algorithm, operating systems designers normally pick lower
miss rates because of the exorbitant miss penalty. Thus, operating systems allow
blocks to be placed anywhere in main memory. According to the terminology in
Figure C.2 on page C-7, this strategy would be labeled fully associative.

Q2:How Is a Block Found If It Is in Main Memory?

Both paging and segmentation rely on a data structure that is indexed by the page
or segment number. This data structure contains the physical address of the
block. For segmentation, the offset is added to the segment’s physical address to
obtain the final physical address. For paging, the offset is simply concatenated to
this physical page address (see Figure C.22).

C.4 Virtual Memory = C-43

Virtual address

Virtual page number Page offset I

Main
memory

—— -

Page
table Physicai address

Figure C.22 The mapping of a virtual address to a physical address via a page table.

This data structure, containing the physical page addresses, usually takes the
form of a page table. Indexed by the virtual page number, the size of the table is
the number of pages in the virtual address space. Given a 32-bit virtual address,
4 KB pages, and 4 bytes per Page Table Entry (PTE), the size of the page table
would be (23%/212) x 22 = 222 or 4 MB.

To reduce the size of this data structure, some computers apply a hashing
function to the virtual address. The hash allows the data structure to be the length
of the number of physical pages in main memory. This number could be much
smaller than the number of virtual pages. Such a structure is called an inverted
page table. Using the previous example, a 512 MB physical memory would only
need 1 MB (8 x 512 MB/4 KB) for an inverted page table; the extra 4 bytes per
page table entry are for the virtual address. The HP/Intel IA-64 covers both bases
by offering both traditional pages tables and inverted page tables, leaving the
choice of mechanism to the operating system programmer.

To reduce address translation time, computers use a cache dedicated to these
address translations, called a translation lookaside buffer, or simply translation
buffer, described in more detail shortly.

Q3: Which Block Should Be Replaced on a Virtual Memory Miss?

As mentioned earlier, the overriding operating system guideline is minimizing
page faults. Consistent with this guideline, almost all operating systems try to
replace the least-recently used (LRU) block because if the past predicts the
future, that is the one less likely to be needed.

To help the operating system estimate LRU, many processors provide a use
bit or reference bit, which is logically set whenever a page is accessed. (To reduce
work, it is actually set only on a translation buffer miss, which is described
shortly.) The operating system periodically clears the use bits and later records

C-44

Appendix C Review of Memory Hierarchy

them so it can determine which pages were touched during a particular time
period. By keeping track in this way, the operating system can select a page that
is among the least-recently referenced.

Q4: What Happens on a Write?

The level below main memory contains rotating magnetic disks that take millions
of clock cycles to access. Because of the great discrepancy in access time, no one
has yet built a virtual memory operating system that writes through main memory
to disk on every store by the processor. (This remark should not be interpreted as
an opportunity to become famous by being the first to build one!) Thus, the write
strategy is always write back.

Since the cost of an unnecessary access to the next-lower level s so high, vir-
tual memory systems usually include a dirty bit. It allows blocks to be written to
disk only if they have been altered since being read from the disk.

Techniques for Fast Address Translation

Page tables are usually so large that they are stored in main memory and are
sometimes paged themselves. Paging means that every memory access logically
takes at least twice as long, with one memory access to obtain the physical
address and a second access to get the data. As mentioned in Chapter 5, we use
locality to avoid the extra memory access. By keeping address translations in a
special cache, a memory access rarely requires a second access to translate the
data. This special address translation cache is referred to as a translation looka-
side buffer (TLB), also called a translation buffer (TB).

A TLB entry is like a cache entry where the tag holds portions of the virtual
address and the data portion holds a physical page frame number, protection
field, valid bit, and usually a use bit and dirty bit. To change the physical page
frame number or protection of an entry in the page table, the operating system
must make sure the old entry is not in the TLB; otherwise, the system won’t
behave properly. Note that this dirty bit means the corresponding page is dirty,
not that the address translation in the TLB is dirty nor that a particular block in
the data cache is dirty. The operating system resets these bits by changing the
value in the page table and then invalidates the corresponding TLB entry. When
the entry is reloaded from the page table, the TLB gets an accurate copy of the
bits.

Figure C.23 shows the Opteron data TLB organization, with each step of the
translation labeled. This TLB uses fully associative placement; thus, the transla-
tion begins (steps 1 and 2) by sending the virtual address to all tags. Of course,
the tag must be marked valid to allow a match. At the same time, the type of
memory access is checked for a violation (also in step 2) against protection infor-
mation in the TLB.

For reasons similar to those in the cache case, there is no need to include the
12 bits of the page offset in the TLB. The matching tag sends the corresponding

C.4 Virtual Memory C-45

Virtual page Page

number offset
<36> <12>
I k
5
@ <1> eee <1><1> <36> <28>
V RW US D A Tag Physical address
Z
S|
i {Low-order 12 bits
—_] | [1] | J | of address)
<i2>

T
L f——————— 40-bit
® “’li_._f.zll.".’i’x___] < (@) physica

address
(High-order 28 bits of address)

Figure C.23 Operation of the Opteron data TLB during address translation. The four
steps of a TLB hit are shown as circled numbers. This TLB has 40 entries. Section C.5
describes the various protection and access fields of an Opteron page table entry.

physical address through effectively a 40:1 multiplexor (step 3). The page offset
is then combined with the physical page frame to form a full physical address
(step 4). The address size is 40 bits.

Address translation can easily be on the critical path determining the clock
cycle of the processor, so the Opteron uses virtually addressed, physically tagged
L1 caches.

Selecting a Page Size

The most obvious architectural parameter is the page size. Choosing the page is a
question of balancing forces that favor a larger page size versus those favoring a
smaller size. The following favor a larger size:

s The size of the page table is inversely proportional to the page size; memory
(or other resources used for the memory map) can therefore be saved by mak-
ing the pages bigger.

m As mentioned in Section C.3, a larger page size can allow larger caches with
fast cache hit times.

m Transferring larger pages to or from secondary storage, possibly over a net-
work, is more efficient than transferring smaller pages.

s The number of TLB entries is restricted, so a larger page size means that
more memory can be mapped efficiently, thereby reducing the number of
TLB misses.

It is for this final reason that recent microprocessors have decided to support mul-
tiple page sizes; for some programs, TLB misses can be as significant on CPI as
the cache misses.

C-46

Appendix C Review of Memory Hierarchy

The main motivation for a smaller page size is conserving storage. A small
page size will result in less wasted storage when a contiguous region of virtual
memory is not equal in size to a multiple of the page size. The term for this
unused memory in a page is internal fragmentation. Assuming that each process
has three primary segments (text, heap, and stack), the average wasted storage
per process will be 1.5 times the page size. This amount is negligible for comput-
ers with hundreds of megabytes of memory and page sizes of 4 KB to 8 KB. Of
course, when the page sizes become very large (more than 32 KB), storage (both
main and secondary) could be wasted, as well as /O bandwidth. A final concern
is process start-up time; many processes are small, so a large page size would
lengthen the time to invoke a process.

Summary of Virtual Memory and Caches

With virtual memory, TLBs, first-level caches, and second-level caches all map-
ping portions of the virtual and physical address space, it can get confusing what
bits go where. Figure C.24 gives a hypothetical example going from a 64-bit vir-
tual address to a 41-bit physical address with two levels of cache. This L1 cache
is virtually indexed, physically tagged since both the cache size and the page size
are 8 KB. The L2 cache is 4 MB. The block size for both is 64 bytes.

First, the 64-bit virtual address is logically divided into a virtual page number
and page offset. The former is sent to the TLB to be translated into a physical
address, and the high bit of the latter is sent to the L1 cache to act as an index. If
the TLB match is a hit, then the physical page number is sent to the L1 cache tag
to check for a match. If it matches, it’s an L1 cache hit. The block offset then
selects the word for the processor.

If the L1 cache check results in a miss, the physical address is then used to try
the L.2 cache. The middle portion of the physical address is used as an index to
the 4 MB L2 cache. The resulting L2 cache tag is compared to the upper part of
the physical address to check for a match. If it matches, we have an L2 cache hit,
and the data are sent to the processor, which uses the block offset to select the
desired word. On an L2 miss, the physical address is then used to get the block
from memory.

Although this is a simple example, the major difference between this drawing
and a real cache is replication. First, there is only one L1 cache. When there are
two L1 caches, the top half of the diagram is duplicated. Note this would lead to
two TLBs, which is typical. Hence, one cache and TLB is for instructions, driven
from the PC, and one cache and TLB is for data, driven from the effective
address.

The second simplification is that all the caches and TLBs are direct mapped.
If any were n-way set associative, then we would replicate each set of tag mem-
ory, comparators, and data memory n times and connect data memories with an
n:1 multiplexor to select a hit. Of course, if the total cache size remained the
same, the cache index would also shrink by log2n bits according to the formula in
Figure C.7 on page C-21.

C.5 Protection and Examples of Virtual Memory C-47

(Virtual address <64>

l

r Virtual page number <51>

Page offset <13>

l

ITLB tag compare address <43> I TLB index <8> I [L1 cache index <7> [Block offset <6>J

To CPU

TLB data <28>

TLB tag <43>

I L1 tag compare address <28>J

[

L1 data <512>

L1 cache tag <43>

—

Physical address <41>

]

l

l

{ L2 tag compare address <19> I L2 cache index <16>l Block offset <6> !

l To CPU

L2 cache tag <19> 1 L2 data <512>

To L1 cache or CPU

Figure C.24 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache
access. The page size is 8 KB. The TLB is direct mapped with 256 entries.The L1 cache is a direct-mapped 8 KB, and
the L2 cache is a direct-mapped 4 MB. Both use 64-byte blocks.The virtual address is 64 bits and the physical address
is 41 bits. The primary difference between this simple figure and a real cache is replication of pieces of this figure.

C5 Protection and Examples of Virtual Memory

The invention of multiprogramming, where a computer would be shared by
several programs running concurrently, led to new demands for protection and
sharing among programs. These demands are closely tied to virtual memory in
computers today, and so we cover the topic here along with two examples of vir-

tual memory.

Multiprogramming leads to the concept of a process. Metaphorically, a pro-
cess is a program’s breathing air and living space—that is, a running program

C-48

Appendix C Review of Memory Hierarchy

plus any state needed to continue running it. Time-sharing is a variation of multi-
programming that shares the processor and memory with several interactive users
at the same time, giving the illusion that all users have their own computers.
Thus, at any instant it must be possible to switch from one process to another.
This exchange is called a process switch or context switch.

A process must operate correctly whether it executes continuously from start
to finish, or it is interrupted repeatedly and switched with other processes. The
responsibility for maintaining correct process behavior is shared by designers of
the computer and the operating system. The computer designer must ensure that
the processor portion of the process state can be saved and restored. The operat-
ing system designer must guarantee that processes do not interfere with each oth-
ers’ computations.

The safest way to protect the state of one process from another would be to
copy the current information to disk. However, a process switch would then take
seconds—far too long for a time-sharing environment.

This problem is solved by operating systems partitioning main memory so
that several different processes have their state in memory at the same time. This
division means that the operating system designer needs help from the computer
designer to provide protection so that one process cannot modify another.
Besides protection, the computers also provide for sharing of code and data
between processes, to allow communication between processes or to save mem-
ory by reducing the number of copies of identical information.

Protecting Processes

Processes can be protected from one another by having their own page tables.
each pointing to distinct pages of memory. Obviously, user programs must be
prevented from modifying their page tables or protection would be circumvented.

Protection can be escalated, depending on the apprehension of the computer
designer or the purchaser. Rings added to the processor protection structure
expand memory access protection from two levels (user and kernel) to many
more. Like a military classification system of top secret, secret, confidential, and
unclassified, concentric rings of security levels allow the most trusted to access
anything, the second most trusted to access everything except the innermost
level, and so on. The “civilian” programs are the least trusted and, hence, have
the most limited range of accesses. There may also be restrictions on what pieces
of memory can contain code—execute protection—and even on the entrance
point between the levels. The Intel 80x86 protection structure, which uses rings,
is described later in this section. It is not clear whether rings are an improvement
in practice over the simple system of user and kernel modes.

As the designer’s apprehension escalates to trepidation, these simple rings
may not suffice. Restricting the freedom given a program in the inner sanctum
requires a new classification system. Instead of a military model, the analogy of
this system is to keys and locks: A program can’t unlock access to the data unless
it has the key. For these keys, or capabilities, to be useful, the hardware and oper-

C.5 Protection and Examples of Virtual Memory C-49

ating system must be able to explicitly pass them from one program to another
without allowing a program itself to forge them. Such checking requires a great
deal of hardware support if time for checking keys is to be kept low.

The 80x86 architecture has tried several of these alternatives over the years.
Since backwards compatibility is one of the guidelines of this architecture, the
most recent versions of the architecture include all of its experiments in virtual
memory. We’ll go over two of the options here: first, the older segmented address
space and then the newer flat, 64-bit address space.

A Segmented Virtual Memory Example:
Protection in the Intel Pentium

The second system is the most dangerous system a man ever designs. . . . The
general tendency is to over-design the second system, using all the ideas and frills
that were cautiously sidetracked on the first one.

F. P. Brooks, Jr.
The Mythical Man-Month (1975)

The original 8086 used segments for addressing, yet it provided nothing for vii-
tual memory or for protection. Segments had base registers but no bound regis-
ters and no access checks, and before a segment register could be loaded the
corresponding segment had to be in physical memory. Intel’s dedication to virtual
memory and protection is evident in the successors to the 8086, with a few fields
extended to support larger addresses. This protection scheme is elaborate, with
many details carefully designed to try to avoid security loopholes. We'll refer to it
as TA-32. The next few pages highlight a few of the Intel safeguards; if you find
the reading difficult, imagine the difficulty of implementing them!

The first enhancement is to double the traditional two-level protection model:
the 1A-32 has four levels of protection. The innermost level (0) corresponds to the
traditional kernel mode, and the outermost level (3) is the least privileged mode.
The [A-32 has separate stacks for each level to avoid security breaches between
the levels. There are also data structures analogous to traditional page tables that
contain the physical addresses for segments, as well as a list of checks to be made
on translated addresses.

The Intel designers did not stop there. The IA-32 divides the address space,
allowing both the operating system and the user access to the full space. The IA-
32 user can call an operating system routine in this space and even pass
parameters to it while retaining full protection. This safe call is not a trivial
action, since the stack for the operating system is different from the user’s stack.
Moreover, the [A-32 allows the operating system to maintain the protection level
of the called routine for the parameters that are passed to it. This potential loop-
hole in protection is prevented by not allowing the user process to ask the operat-
ing system to access something indirectly that it would not have been able to
access itself. (Such security loopholes are called Trojan horses.)

C-50

Appendix C Review of Memory Hierarchy

The Intel designers were guided by the principle of trusting the operating sys-
tem as little as possible, while supporting sharing and protection. As an example of
the use of such protected sharing, suppose a payroll program writes checks and also
updates the year-to-date information on total salary and benefits payments. Thus,
we want to give the program the ability to read the salary and year-to-date informa-
tion, and modify the year-to-date information but not the salary. We will see the
mechanism to support such features shortly. In the rest of this subsection, we will
look at the big picture of the IA-32 protection and examine its motivation.

Adding Bounds Checking and Memory Mapping

The first step in enhancing the Intel processor was getting the segmented address-
ing to check bounds as well as supply a base. Rather than a base address, the seg-
ment registers in the IA-32 contain an index to a virtual memory data structure
called a descriptor table. Descriptor tables play the role of traditional page tables.
On the IA-32 the equivalent of a page table entry is a segment descriptor. It con-
tains fields found in PTEs:

m Present bit-——Equivalent to the PTE valid bit, used to indicate this is a valid
translation

m Base field—Equivalent to a page frame address, containing the physical
address of the first byte of the segment

m Access bit—Like the reference bit or use bit in some architectures that is
helpful for replacement algorithms

m Artributes field—Specifies the valid operations and protection levels for
operations that use this segment

There is also a limit field, not found in paged systems, which establishes the
upper bound of valid offsets for this segment. Figure C.25 shows examples of 1A-
32 segment descriptors.

IA-32 provides an optional paging system in addition to this segmented
addressing. The upper portion of the 32-bit address selects the segment
descriptor, and the middle portion is an index into the page table selected by the
descriptor. We describe below the protection system that does not rely on paging.

Adding Sharing and Protection

To provide for protected sharing. haif of the address space is shared by all pro-
cesses and half is unique to each process, called global address space and local
address space, respectively. Each half is given a descriptor table with the appro-
priate name. A descriptor pointing to a shared segment is placed in the global
descriptor table, while a descriptor for a private segment is placed in the local
descriptor table.

A program loads an IA-32 segment register with an index to the table and a
bit saying which table it desires. The operation is checked according to the

C.5 Protection and Examples of Virtual Memory c-51

8 bits 4 bits 32 bits 24 bits

i
Attributes Base Limit

Code segment

T
Present 1DF’L 1 Conforming l Readable Accessed

Data segment

Present | OPL 10] Expand down Writable Accessed

8 bits 8 bits 16 bits 16 bits

Word
count

Attributes Destination selector Destination offset

Call gate

Present | DPL 01 00100 '

Figure C.25 The 1A-32 segment descriptors are distinguished by bits in the
attributes field. Base, /imit, present, readable, and writable are all self-explanatory. D
gives the default addressing size of the instructions: 16 bits or 32 bits. G gives the gran-
ularity of the segment limit: 0 means in bytes and 1 means in 4 KB pages. G is set to 1
when paging is turned on to set the size of the page tables. DPL means descriptor privi-
lege level—this is checked against the code privilege level to see if the access will be
allowed. Conforming says the code takes on the privilege level of the code being called
rather than the privilege level of the caller; it is used for library routines. The expand-
down field flips the check to let the base field be the high-water mark and the limit field
be the low-water mark. As you might expect, this is used for stack segments that grow
down. Word count controls the number of words copied from the current stack to the
new stack on a call gate. The other two fields of the call gate descriptor, destination
selector and destination offset, select the descriptor of the destination of the call and the
offset into it, respectively. There are many more than these three segment descriptors
in the 1A-32 protection model.

attributes in the descriptor, the physical address being formed by adding the off-
set in the processor to the base in the descriptor, provided the offset is less than
the limit field. Every segment descriptor has a separate 2-bit field to give the legal
access level of this segment. A violation occurs only if the program tries to use a
segment with a lower protection level in the segment descriptor.

We can now show how to invoke the payroll program mentioned above to
update the year-to-date information without allowing it to update salaries. The
program could be given a descriptor to the information that has the writable field
clear, meaning it can read but not write the data. A trusted program can then be
supplied that will only write the year-to-date information. It is given a descriptor
with the writable field set (Figure C.25). The payroll program invokes the trusted
code using a code segment descriptor with the conforming field set. This setting

C-52

Appendix C Review of Memory Hierarchy

means the called program takes on the privilege level of the code being called
rather than the privilege level of the caller. Hence, the payroll program can read
the salaries and call a trusted program to update the year-to-date totals, yet the
payroll program cannot modify the salaries. If a Trojan horse exists in this sys-
tem, to be effective it must be located in the trusted code whose only job is to
update the year-to-date information. The argument for this style of protection is
that limiting the scope of the vulnerability enhances security.

Adding Safe Calls from User to OS Gates and Inheriting Protection
Level for Parameters

Allowing the user to jump into the operating system is a bold step. How, then, can
a hardware designer increase the chances of a safe system without trusting the
operating system or any other piece of code? The 1A-32 approach is to restrict
where the user can enter a piece of code, to safely place parameters on the proper
stack, and to make sure the user parameters don’t get the protection level of the
called code.

To restrict entry into others’ code, the IA-32 provides a special segment
descriptor, or call gate, identified by a bit in the attributes field. Unlike other
descriptors, call gates are full physical addresses of an object in memory; the off-
set supplied by the processor is ignored. As stated above, their purpose is to pre-
vent the user from randomly jumping anywhere into a protected or more
privileged code segment. In our programming example, this means the only place
the payroll program can invoke the trusted code is at the proper boundary. This
restriction is needed to make conforming segments work as intended.

What happens if caller and callee are “mutually suspicious,” so that neither
trusts the other? The solution is found in the word count field in the bottom
descriptor in Figure C.25. When a call instruction invokes a call gate descriptor,
the descriptor copies the number of words specified in the descriptor from the
local stack onto the stack corresponding to the level of this segment. This copy-
ing allows the user to pass parameters by first pushing them onto the local stack.
The hardware then safely transfers them onto the correct stack. A return from a
call gate will pop the parameters off both stacks and copy any return values to the
proper stack. Note that this model is incompatible with the current practice of
passing parameters in registers.

This scheme still leaves open the potential loophole of having the operating
system use the user’s address, passed as parameters, with the operating system’s
security level, instead of with the user’s level. The IA-32 solves this problem by
dedicating 2 bits in every processor segment register to the requested protection
level. When an operating system routine is invoked, it can execute an instruction
that sets this 2-bit field in all address parameters with the protection level of the
user that called the routine. Thus, when these address parameters are loaded into
the segment registers, they will set the requested protection level to the proper
value. The IA-32 hardware then uses the requested protection level to prevent any
foolishness: No segment can be accessed from the system routine using those
parameters if it has a more privileged protection level than requested.

C.5 Protection and Examples of Virtual Memory C-53

A Paged Virtual Memory Example:
The 64-Bit Opteron Memory Management

AMD engineers found few uses of the elaborate protection model described
above. The popular model is a flat, 32-bit address space, introduced by the
80386, which sets all the base values of the segment registers to zero. Hence,
AMD dispensed with the multiple segments in the 64-bit mode. It assumes that
the segment base is zero and ignores the limit field. The page sizes are 4 KB,
2 MB, and 4 MB.

The 64-bit virtual address of the AMDG64 architecture is mapped onto 52-bit
physical addresses, although implementations can implement fewer bits to sim-
plify hardware. The Opteron, for example, uses 48-bit virtual addresses and 40-
bit physical addresses. AMDG64 requires that the upper 16 bits of the virtual
address be just the sign extension of the lower 48 bits, which it calls canonical
form.

The size of page tables for the 64-bit address space is alarming. Hence,
AMDG64 uses a multilevel hierarchical page table to map the address space to
keep the size reasonable. The number of levels depends on the size of the virtual
address space. Figure C.26 shows the four-level translation of the 48-bit virtual
addresses of the Opteron.

The offsets for each of these page tables come from four 9-bit fields. Address
translation starts with adding the first offset to the page-map level 4 base register
and then reading memory from this location to get the base of the next-level page
table. The next address offset is in turn added to this newly fetched address, and
memory is accessed again to determine the base of the third page table. It hap-
pens again in the same fashion. The last address field is added to this final base
address, and memory 1s read using this sum to (finally) get the physical address
of the page being referenced. This address is concatenated with the 12-bit page
offset to get the full physical address. Note that page table in the Opteron archi-
tecture fits within a single 4 KB page.

The Opteron uses a 64-bit entry in each of these page tables. The first 12 bits
are reserved for future use, the next 52 bits contain the physical page frame num-
ber, and the last 12 bits give the protection and use information. Although the
fields vary some between the page table levels, here are the basic ones:

® Presence—Says that page is present in memory.
s Read/write—Says whether page is read-only or read-write.

m User/supervisor—Says whether a user can access the page or if it is limited
to upper three privilege levels.

m Dirry—Says if page has been modified.

m Accessed—Says if page has been read or written since the bit was last
cleared.

m Page size—Says whether last level is for 4 KB pages or 4 MB pages; if it’s
the latter, then the Opteron only uses three instead of four levels of pages.

C-54 Appendix C Review of Memory Hierarchy

Page-map L4
base addr (CR3)

63 48 47 39 38 30 29 21 20 12 1 0

000...00r
11,1

Page-map L4 Page-dir-ptr Page-directory Page-table Page offset

Page-map L4 table

Page-directory
pointer tabie
Page-directory
Page-mp entry table
Page-dir-ptr entry Page table

Page-dir entry .Ga
. Page-table entry F—!

Physical address

[Physical page frame number Page offset |

Main memory

Figure C.26 The mapping of an Opteron virtual address. The Opteron virtual memory implementation with four
page table levels supports an effective physical address size of 40 bits. Each page table has 512 entries, so each level
field is 9 bits wide. The AMD64 architecture document allows the virtual address size to grow from the current 48 bits
to 64 bits, and the physical address size to grow from the current 40 bits to 52 bits.

m No execute—Not found in the 80386 protection scheme, this bit was added to
prevent code from executing in some pages.

m Page level cache disable—Says whether the page can be cached or not.

m Page level write through—Says whether the page allows write back or write
through for data caches.

Since the Opteron normally goes through four levels of tables on a TLB miss.
there are three potential places to check protection restrictions. The Opteron
obeys only the bottom-level Page Table Entry, checking the others only to be sure
the valid bit is set.

As the entry is 8 bytes long. each page table has 512 entries, and the Opteron
has 4 KB pages, the page tables are exactly one page long. Each of the four level
fields are 9 bits long and the page offset is 12 bits. This derivation leaves 64 -
(4 X9 + 12) or 16 bits to be sign extended to ensure canonical addresses

Although we have explained translation of legal addresses, what prevents the
user from creating illegal address translations and getting into mischief? The

C.5 Protection and Examples of Virtual Memory - C-55

Parameter Description

Block size 1 PTE (8 bytes)

L1 hit time 1 clock cycle

L2 hit time 7 clock cycles

L1 TLB size same for instruction and data TLBs: 40 PTEs per TLBs, with 32
4 KB pages and 8 for 2M or 4M pages

L2 TLB size same for instruction and data TLBs: 512 PTEs of 4 KB pages

Block selection LRU

Write strategy (not applicable)

L1 block placement fully associative

L2 block placement 4-way set associative

Figure C.27 Memory hierarchy parameters of the Opteron L1 and L2 instruction and
data TLBs.

page tables themselves are protected from being written by user programs. Thus,
the user can try any virtual address, but by controlling the page table entries the
operating system controls what physical memory is accessed. Sharing of memory
between processes is accomplished by having a page table entry in each address
space point to the same physical memory page.

The Opteron employs four TLBs to reduce address translation time, two for
instruction accesses and two for data accesses. Like multilevel caches, the
Opteron reduces TLB misses by having two larger L2 TLBs: one for instructions
and one for data. Figure C.27 describes the data TLB.

Summary: Protection on the 32-Bit Intel Pentium vs. the
64-Bit AMD Opteron

Memory management in the Opteron is typical of most desktop or server comput-
ers today, relying on page-level address translation and correct operation of the
operating system to provide safety to multiple processes sharing the computer.
Although presented as alternatives, Intel has followed AMD’s lead and embraced
the AMDG64 architecture. Hence, both AMD and Intel support the 64-bit exten-
sion of 80x86, yet, for compatibility reasons, both support the elaborate seg-
mented protection scheme.

If the segmented protection model looks harder to build than the AMD64
model, that’s because it is. This effort must be especially frustrating for the engi-
neers, since few customers use the elaborate protection mechanism. In addition,
the fact that the protection model is a mismatch to the simple paging protection
of UNIX-like systems means it will be used only by someone writing an operat-
ing system especially for this computer, which hasn’t happened yet.

C-56

Appendix C Review of Memory Hierarchy

C6 Fallacies and Pitfalls

Pitfall

Pitfall

Pitfall

Even a review of memory hierarchy has fallacies and pitfalls!
Too small an address space.

Just five years after DEC and Carnegie Mellon University collaborated to design
the new PDP-11 computer family, it was apparent that their creation had a fatal
flaw. An architecture announced by IBM six years before the PDP-11 was still
thriving, with minor modifications, 25 years later. And the DEC VAX, criticized
for including unnecessary functions, sold millions of units after the PDP-11 went
out of production. Why?

The fatal flaw of the PDP-11 was the size of its addresses (16 bits) as com-
pared to the address sizes of the IBM 360 (24 to 31 bits) and the VAX (32 bits).
Address size limits the program length, since the size of a program and the
amount of data needed by the program must be less than 2449ress size Tha reacon
the address size is so hard to change is that it determines the minimum width of
anything that can contain an address: PC, register, memory word, and effective-
address arithmetic. If there is no plan to expand the address from the start, then
the chances of successfully changing address size are so slim that it normally
means the end of that computer family. Bell and Strecker [1976] put it like this:

There is only one mistake that can be made in computer design that is difficult to
recover from-—not having enough address bits for memory addressing and mem-
ory management. The PDP-11 followed the unbroken tradition of nearly every
known computer. [p. 2]

A partial list of successful computers that eventually starved to death for lack of
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel
80186, Intel 80286, Motorola 6800, AMI 6502, Zilog Z80, CRAY-1, and CRAY
X-MP.

The venerable 80x86 line bears the distinction of having been extended twice,
first to 32 bits with the Intel 80386 in 1985 and recently to 64 bits with the AMD
Opteron.

Ignoring the impact of the operating system on the performance of the memory
hierarchy.

Figure C.28 shows the memory stall time due to the operating system spent on
three large workloads. About 25% of the stall time is either spent in misses in the
operating system or results from misses in the application programs because of
interference with the operating system.

Relying on the operating systems to change the page size over time.

The Alpha architects had an elaborate plan to grow the architecture over time by
growing its page size, even building it into the size of its virtual address. When it

C.7 Concluding Remarks C-57

Time

% time due to

Misses application misses % time due directly to OS misses .
% time
oS Data OS misses
Inherent conflicts oS Data misses Rest a.nd .
% in %in application with instruction misses for inblock of OS application
Workload applications OS misses applications misses migration operations misses conflicts
Pmake 47% 53% 14.1% 4.8% 10.9% 1.0% 6.2% 2.9% 25.8%
Multipgm 53% 47% 21.6% 3.4% 9.2% 4.2% 4.7% 3.4% 24.9%
Oracle 73% 27% 25.7% 10.2% 10.6% 2.6% 0.6% 2.8% 26.8%

Figure C.28 Misses and time spent in misses for applications and operating system. The operating system adds
about 25% to the execution time of the application. Each processor has a 64 KB instruction cache and a two-level
data cache with 64 KB in the first level and 256 KB in the second level; all caches are direct mapped with 16-byte
blocks. Collected on Silicon Graphics POWER station 4D/340, a multiprocessor with four 33 MHz R3000 processors
running three application workloads under a UNIX System V—Pmake: a parallel compile of 56 files; Multipgm: the
parallel numeric program MP3D running concurrently with Pmake and a five-screen edit session; and Oracle: run-
ning a restricted version of the TP-1 benchmark using the Oracle database. (Data from Torrellas, Gupta, and Hen-

nessy [1992].)

C7

came time to grow page sizes with later Alphas, the operating system designers
balked and the virtual memory system was revised to grow the address space
while maintaining the 8 KB page.

Architects of other computers noticed very high TLB miss rates, and so
added multiple, larger page sizes to the TLB. The hope was that operating sys-
tems programmers would allocate an object to the largest page that made sense,
thereby preserving TLB entries. After a decade of trying, most operating systems
use these “superpages” only for handpicked functions: mapping the display
memory or other /O devices, or using very large pages for the database code.

Concluding Remarks

The difficulty of building a memory system to keep pace with faster processors is
underscored by the fact that the raw material for main memory is the same as that
found in the cheapest computer. It is the principle of locality that helps us here—
its soundness is demonstrated at all levels of the memory hierarchy in current
computers, from disks to TLBs.

However. the increasing relative latency to memory, taking hundreds of
clock cycles in 2006, means that programmers and compiler writers must be
aware of the parameters of the caches and TLBs if they want their programs to
perform well.

C-58 Appendix C Review of Memory Hierarchy

C8 Historical Perspective and References

In Section K.6 on the companion CD we examine the history of caches, virtual
memory, and virtual machines. IBM plays a prominent role in this history. Refer-
ences for further reading are included.

